

Software Security is Your
Responsibility

August 2016

Software Security is Your Responsibility

Page 2

The information contained in this document represents the current view of LANSA on the issues discussed

as of the date of publication. Because LANSA must respond to changing market conditions, it should not be

interpreted to be a commitment on the part of LANSA, and LANSA cannot guarantee the accuracy of any

information presented after the date of publication. In many cases, information in this document is

dependent on information from third-party vendors.

The statements in this document about specific product features represent the current status or planned

intentions of LANSA within a one-year time frame of date of publication.

LANSA development plans are subject to change or withdrawal without further notice. Any reliance on this

document is at the relying party’s sole risk and will not create any liability or obligation for LANSA.

This document is for informational purposes only. LANSA MAKES NO WARRANTIES, EXPRESSED OR

IMPLIED, IN THIS DOCUMENT.

V1.0

© 2016 LANSA. All rights reserved.

Asia Pacific:

Headquarters — Sydney, Australia

Tel: +61 2 8907 0200

Email: info@lansa.com.au

The Americas:

Headquarters — Chicago, USA

Tel: +1 630 874 7000

Email: info@lansa.com

Europe:

Headquarters — London, UK

Tel: +44 1727 790300

Email: info@lansa.co.uk

Software Security is Your Responsibility

Page 3

Why invest in security?

Security has always been a concern for society. Individuals use guards, locks and keys to secure homes and
offices. Organisations implement physical security mechanisms to control access to premises and identify
employees. These security mechanisms might have been sufficient to protect information technology (IT)
resources before the introduction of the internet. Now that everything is connected, attacking or hacking IT
resources is a feasible and profitable activity. Attacks are more likely to be criminal or state sponsored than
was the case in the past. Such attacks focus on economic gain (e.g. hacking and selling data) or business
disruption for competitive advantage.

It is no longer safe to develop software without considering the whole of application security aspects of the
software, e.g. the data it will use, the context in which it will run, the application architecture, and the
development tools. Security is relative to the physical context of the IT resources and the nature of
business operation. Security mechanisms that work in one organisation may be inadequate in another.
Security is relative between organisations. If your organisation is more secure than your competition,
hackers will attack the competitors before attacking you.

Don’t view security as a collection or siloes. Security is a whole-of-business concern and includes physical
assets, IT resources, data, and people (e.g. employees, contractors, suppliers and customers). Protecting IT
resources requires constant vigilance, a security perspective, and an expanding list of security tools.

This document presents concepts, definitions and issues to consider when developing software. The
information does not describe how to apply security measures, nor does it offer guidelines or best practice
for developing secure applications.

Security then and now

Once upon a time perimeter security was sufficient to protect IT resources. Companies controlled the
gateways and there was little need for security measures inside the organisation or the applications.
Developers did not need to include security mechanisms in applications as authorisation occurred at the
application entry point. Large applications such as Enterprise Resource Planning (ERP) software included
role based access to parts of the applications as a way to manage user activity, but this security mechanism
applied only in the application.

Now everything is accessible even when locked down and access controlled.

Companies require strong authentication (e.g. two factor), authorisation mapped and enforced, and secure
applications, on top of network and perimeter security. Security mechanisms must consider the risks a
company faces and security threats posed by employees, customers and partners. Developers must play a
role in securing IT resources but their knowledge, skills and behaviour can be security weak points.
Therefore, developers must ensure the code they write is not open to exploit. Application users and
stakeholders have a responsibility to support developers by not asking for security shortcuts. If cost is your
concern, remember that the cost of changes to applications escalates when applications reach the
maintenance stage of the development cycle. Finding security flaws early in the development cycle reduces
maintenance costs and removes potential security risks.

Security is your responsibility.

Software Security is Your Responsibility

Page 4

Threat, weakness and exploit examples

Name Definition Category

Application configuration
errors

Examples are default passwords, hard coded user
Ids and passwords, and testing features enabled by
default.

Configuration

Application process
weaknesses

Attackers can circumvent application processes. Application logic
errors

Authentication errors Applications with flawed authentication processes
allow attackers to bypass or compromise
authentication and access data and/or application
functions.

Authentication

Authorization failures When applications fail to check a user's
authorisation to use functions and/or data,
attackers can exploit the resources by running
functions or stealing data.

Authorization

Binary planting Binary planting occurs when an attacker loads
binary file(s) containing malicious code to a server.
The malicious binary can steal data or delete files.

Malicious code or
values

Broken or risky cryptographic
algorithm

Attackers can exploit applications that use
cryptographic methods and tools known to be
insecure or easily decrypted.

Application logic
errors

Brute force Attackers use trial and error to hack an application
by changing data after analysing application
responses.

Application
functionality
manipulation

Buffer overflow Attackers insert data into a memory buffer beyond
the buffer size.

Application logic
errors

Business logic errors Attackers exploit flaws in an application's business
logic or rules.

Application logic
errors

Cache poisoning Application must understand objects that they
place in a cache. Caching malicious attack
responses (e.g. malicious JavaScript) will amplify or
spread the effect of an exploit.

Application
functionality
manipulation

Carriage return line feed
injection

Attacker includes carriage return and/or line feed
characters in input data.

Input validation

Software Security is Your Responsibility

Page 5

Name Definition Category

Catching null pointer
exceptions

Programs should not catch null pointer exceptions.
These exceptions indicate null pointer
dereferences and require application code fixes.

Application logic
errors

Code injection Attackers insert malicious code into input data
subsequently run by an application.

Injection

Command injection Attackers insert operating system commands into
input data subsequently run by an application.

Injection

Content security policy (CSP) Compromising content security policy can allow
attackers to use cross site scripting exploits.

Injection

Content spoofing Attackers modify a website or present a
counterfeit website purporting to be legitimate.

Spoofing

Cookie (or session) hijacking Attackers monitor network traffic and extract
unencrypted cookies. They use the stolen cookies
to connect to the website and impersonate a valid
user to obtains the user's details and/or operate
the user's authorised business functions.

Authentication

Credential stuffing Attackers use stolen or guessed credentials to gain
access to an application.

Authentication

Credential/session prediction Credential prediction occurs when an attacker
guesses a user's credentials and operates an
application by impersonating an authorised user.

Authentication

Cross-frame scripting (CFS) Attackers embed a website into a frame on their
own website and capture data from activity in the
frame, e.g. using a key logger.

Injection

Cross-origin resource sharing
(CORS)

Attackers insert values into an origin request HTTP
header that force an application to provide
resource content.

Injection

Cross-site history
manipulation (XSHM)

Attackers use browser history to perpetrate
exploits to gain information such as login status,
resource mapping, user activity and parameter
stealing.

Injection

Cross-site request forgery
(CSRF)

Attackers send unauthorized commands to a
website from a trusted user (also known as XSRF)

Spoofing

Software Security is Your Responsibility

Page 6

Name Definition Category

Cross-site scripting Attackers gather data by inserting malicious code
in a website by injecting scripts that run in a
browser.

Injection

Cross-site tracing (XST) Cross-site tracing occurs when an attacker uses
HTTP TRACE to read HTTP headers. In an attack the
server will send back all the data including the
cookie and bypasses the HttpOnly cookie property.

Injection

Cryptanalysis Attackers analyse a cryptographic cipher and break
the cipher allowing them access to encrypted data.

Cryptographic
exploits

Custom special character
injection

Attackers can manipulate data when an application
fails to validate non-printable (or special)
characters and reserved strings used by the
application.

Injection

Data validation weaknesses Applications with inadequate input validation are
vulnerable to attack.

Input validation

Denial of service Attackers cause servers and/or network appliances
to be unavailable or inoperable by flooding the
servers or appliances with service requests.

Resource
manipulation and
depletion

Deserialization of untrusted
data

Attackers can exploit applications that de-serialise
data without knowing whether the data is
trustworthy and does not include invalid data.

Application logic
errors

Direct dynamic code
evaluation, eval() injection

Attackers can exploit applications that fail to
validate user input by passing code to an eval()
statement with subsequent script execution.

Injection

Directory indexing Attackers can exploit flaws in configuration files to
discover web server directory content.

Configuration

Directory restriction error Attackers can gain unauthorised access to files
using relative paths or path traversal attacks when
applications fail to enforce access policies.

Application logic
errors

Domains and accounts Allowing domains or accounts to expire. Sensitive data
protection

Double encoding Attackers can encode user input data twice in
hexadecimal format to avoid security and
validation or force unexpected application
behaviour.

Resource
manipulation and
depletion

Software Security is Your Responsibility

Page 7

Name Definition Category

Empty string password Empty string passwords are easy to guess and
susceptible to brute force attacks.

Application logic
errors

Execution after redirect (EAR) When developers use an HTTP redirect without a
return after the redirect, and assume execution
stops after the redirect, attackers can exploit the
flawed assumption that execution stops after the
redirect, when in fact, execution continues.

Malicious code or
values

Failure to validate return
values

Applications that fail to check return values are
open to exploit. An attacker can manipulate return
values and cause unexpected application
behaviour.

Code quality

Flawed password recovery
processes

Website allows an attacker to obtain or reset
legitimate user passwords.

Authentication

Flaws or missing input
validation

Flaws or missing input validation opens an
application to injection and data manipulation
attacks.

Input validation

Format string attack Application input validation flaws can allow
attackers to include format string parameters (%d,
%s, %x) and execute commands.

Injection

Full path disclosure Attackers can insert certain characters into a web
page and obtain the path to the webroot of a
server.

Injection

Hardcoding passwords Attackers can use hard-coded passwords to
compromise application security. The only remedy
is to remove the hard-coded passwords during
which time the application remains vulnerable to
attack.

Application logic
errors

Improper output data Application produces data that can be used in an
attack e.g. protocol errors and application data
errors.

Application logic
errors

Incorrect or missing file
system permissions

Incorrect, inadequate or missing file system
authorisation allows attackers access to a file
system and its content for theft and/or data
manipulation.

Authorization

Information leakage Information leakage exploits occur when
applications reveal sensitive data to by attackers.

Application logic
errors

Software Security is Your Responsibility

Page 8

Name Definition Category

Insecure indexing Flaws in search indexing processes can allow
access to resources (e.g. files and data) not
intended for public use. Attackers use search
queries to find the resources then steal or delete
files, or manipulate data.

Sensitive data
protection

Insufficient entropy When attackers can guess the result of random
number generation the generating engine lacks
entropy, i.e. predictable random numbers are not
random.

Cryptographic
exploits

Integer overflow errors A multiplication or addition result overflows the
maximum size of an integer causing incorrect data.

Data structure
attacks

LDAP injection Attackers can formulate LDAP queries and retrieve
data when applications lack adequate input
validation.

Injection

Least privilege faults Applications requiring elevated authorisation
privileges to execute a task should revert to least
privileges after completing the task. Failure to so
opens a weakness exploitable by attackers.

Authorization

Leftover debug code Leaving debug or testing code in an application can
open a back door to attackers.

Code quality

Log injection Inserting invalid data in log files allows attackers to
manipulate log entries or add fraudulent log
entries.

Injection

Logic time bomb A logic time bomb is malicious code in an
application that remains dormant until triggered
by an event. The code might manipulate data
and/or delete files.

Malicious code or
values

Man-in-the-browser attack A man-in-the-browser attack is Trojan horse code
that secretly modifies web pages, changes
transaction data or creates transactions.

Spoofing

Man-in-the-middle attack Man-in-the-middle attacks intercept
communications between servers or browsers and
servers to act as a proxy that manipulates or
inserts data.

Spoofing

Software Security is Your Responsibility

Page 9

Name Definition Category

Memory leak Memory leaks occur when developers fail to
release allocated memory. Attackers can use
memory leaks to crash an application or perpetrate
denial of service attacks by allocating memory until
exhausting the server's memory.

Code quality

Missing error handling Web applications should include a default error
page to avoid passing uncaught errors (e.g. 404) to
an attacker.

Application logic
errors

Null character injection Attackers bypass valid data checks by including null
characters %00 or 0x00 in user input data.

Injection

Parameter delimiter
manipulation

Attackers manipulate parameter delimiters used
by application input and cause unexpected
behaviour such as bypassing authorisation and
accessing data.

Injection

Parameter tampering (URL or
web page)

Parameter tampering occurs when attackers
manipulate URL parameters or form data.

Injection

Path or directory traversal A directory (or path) traversal attack exploits
authorisation flaws that allow attackers access to
files and directories outside the web server's root
directory.

Authorization

Predictable resource location Attackers use brute force methods to guess hidden
website or server content not intended for public
use. Similar attacks include file enumeration and
directory (or folder) enumeration.

Resource
manipulation and
depletion

Privacy violation Missing or inadequate security measures guarding
data, including passwords, social security numbers,
and personal details, allow attackers to steal the
data.

Sensitive data
protection

Process control Process control attacks occur when an application
invokes commands or loads libraries from
untrusted sources. The outcome is unexpected
behaviour or results from the process.

Authorization

Software Security is Your Responsibility

Page 10

Name Definition Category

Reflected injection Reflected attacks are delivered to users via email
or a website. Users clicking a link or submitting a
malicious form cause injected code to travel back
to a vulnerable website which reflects the attack to
the user's browser. The browser executes the
injected code assuming it came from a trusted
server. Reflected injection is a type of cross-site
scripting exploit.

Injection

Regular expression denial of
service

Attackers insert a regular expression that causes
the expression evaluation to run for a long time,
thereby using excessive server resources

Denial of service

Regular expressions Flaws in regular expressions can provide
unexpected data to attackers.

Application logic
errors

Remote file inclusion (RFI) Attackers exploit dynamic file upload features in
applications to upload remote files including
malicious code.

Malicious code or
values

Resource injection Attackers can alter application behaviour by
changing the names or values of an application's
resource identifiers e.g. file names.

Resource
manipulation and
depletion

Server configuration flaws Many servers come with sample configuration
files, scripts, and widely known accounts with
default passwords. Attackers can exploit this data
to bypass authentication and compromise
authorization to server resources.

Configuration

Server-side includes (SSI) Server-side includes is a technique for inserting
content from a file into one or more other files. An
attack uses server side includes manipulation or
user input fields to inject scripts into HTML pages.

Injection

Session expiration errors Attackers can reuse unused or expired session
credentials.

Session
management

Session fixation Session fixation attacks hijack real user sessions by
exploiting weaknesses in the way applications
implement session ID management.

Session
management

Session prediction Attackers use trial and error to guess session ids
and then access a server using a valid id.

Session
management

Software Security is Your Responsibility

Page 11

Name Definition Category

Settings manipulation When attackers can access application settings
they can change values and influence the way the
application operates.

Resource
manipulation and
depletion

Special element injection Attackers inject format characters or reserved
words into data input to exploit applications that
fail to adequately validate input data.

Injection

Spyware Spyware is software that collects data via a user's
internet connection without the user's knowledge.

Resource
manipulation and
depletion

SQL injection SQL injection occurs when an attacker inserts
malicious SQL commands into an SQL statement.
SQL injection attacks exploit flaws in data
validation when applications use input data to
build SQL queries dynamically.

Injection

Storing passwords as text Storing or sending password as clear text allows
attackers easy access to an application.

Application logic
errors

String termination incorrect Failure to properly terminate strings can lead to
buffer overflow exploits, e.g. if an application
expects input data as null terminated strings an
attacker can input data without a null and cause a
buffer overflow.

Application logic
errors

Traffic flood Traffic flood is a denial of service attack that uses
many requests (e.g. UDP datagrams or DNS
queries) to overwhelm a server.

Denial of service

Trojan horse Attackers use an email link or a movie as a Trojan
horse and when clicked it starts a malicious
program that can erase data or capture keystrokes.

Malicious code or
values

Unicode encoding Encoding attacks exploit flaws in an application's
Unicode data decoding process. An attacker can
alter the decoding process and insert inappropriate
data.

Code quality

Unreleased resource When applications fail to release resources, an
attacker can cause a resource leak and launch a
denial of service attack by depleting a resource
pool.

Resource
manipulation and
depletion

Software Security is Your Responsibility

Page 12

Name Definition Category

Unrestricted file upload Uploaded files pose a threat if not managed
correctly or restricted to expected mime types.
Attackers can embed malicious code in uploaded
files.

Code quality

Using deprecated or obsolete
methods

Attackers can exploit deprecated or obsolete
methods to manipulate the behaviour of an
application.

Code quality

XML external entity
processing (XXE)

Poorly configured XML parsers allow attackers to
manipulate external references in XML documents
to embed malicious data or access local files.

Application logic
errors

XML validation missing Flaws in XML document validation during parsing
can allow attackers to manipulate the content of
the document.

Application logic
errors

XPath injection Applications that assemble XPath queries from
user input data without validating the data are
open to exploit by attackers submitting invalid or
malformed data to access data in XML documents.

Injection

XQuery injection Applications that assemble XQuery queries from
user input data without validating the data are
open to exploit by attackers submitting commands
and executing queries.

Injection

