

Documentation Library

eXtensions Tutorials

eXtensions Tutorial 0 - Getting Started

eXtensions Tutorial 1 - Screen and Field Identification

eXtensions Tutorial 2 - Basic Screen Enhancement

eXtensions Tutorial 3 - Advanced Screen Enhancement

eXtensions Tutorial 4 - Autogui+

eXtensions Tutorial 5 - Tracing and Debugging Techniques

eXtensions Tutorial 6 - The USERENV object

eXtensions Tutorial 7 - Tables and XML Documents

eXtensions Tutorial 8 - Best Practices

eXtensions Tutorial 9 - Creating your own eXtensions

eXtensions Tutorial 10 - Deployment

eXtensions Tutorial 11 - 5250 Screen Styling

eXtensions Tutorial 12 - FAQ and Examples

eXtensions Tutorial 13 - Smart Phone Applications

eXtensions Tutorial 14 - Utilities

eXtensions Tutorial 15 - TS2 Developer Tools

eXtensions Tutorial 16 - jQuery Themes

eXtensions Tutorial 17 – Google Chart Tutorial

eXtensions Tutorial 18 – TS2 Login Screen Customisation

Advanced Tutorials

eXtensions Tutorial 0 - Getting Started

Check your Development PC is ready
To do application development using eXtensions you need to have an up to date
development PC. Complete this checklist:

Check Okay

Core 2 Duo class processor, equivalent or better (see note 1)

1Gb RAM or more (see note 1)

Screen resolution of 1440×1080 or better (see note 2)

Windows 8 or later.

Internet Explorer set as the default browser

Note 1: You can use extensions on systems below this recommended specification, but your development
activities will be impacted accordingly. You should consider upgrading your development system.

Note 2: There are productivity and ease of use benefits to be gained by using a wide screen monitor or
multiple side-by-side monitors when doing any type of IT application development. Any form of IT application
development on a low resolution monitor (eg: 1024x768) will take longer and be more cumbersome than it
needs to be.

Check your Internet Explorer Settings
To do aXes application development you will use Internet Explorer.
Complete this Internet Explorer checklist:

Check Okay

Check that Internet Explorer's SmartScreen Filter is turned off.

Use the Safety button to view the status of your Internet Explorer SmartScreen Filter. If it is
turned on then turn it off. This off setting is strongly recommended for application developers to
avoid Internet Explorer failures.

Check that the aXes server is in your trusted sites list.
Open your browser. Use Tools -> Internet Options -> Security tab.
Select Trusted sites, and click the Sites button.
In this example http://lansa04 is the aXes server root address, so it was added:

Documentation Library

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 0 - Getting Started , Page 5 of 407
407

In order to see the changes you make immediately, ensure that you are not using cached pages.
To do this, click on the Settings button in the Browsing history section of the General tab, and then
select the option to check for newer versions of stored pages Every time I visit the webpage:

Check that any pop up blocker(s) you have installed do not block pop ups initiated by scripts
loaded from your aXes server.

Check that library AXESDEMO is installed and useable

To complete the eXtension tutorials you must have library AXESDEMO installed on your
system.

The Axes demonstration material is installed by option 99 during an Axes install.

Perform this check before starting any eXtension tutorials:

Check Okay

Sign on to a 5250 screen

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 0 - Getting Started , Page 6 of 407
407

ADDLIBLE AXESDEMO

CALL XHRRPGTRN

The resulting 5250 display should look something like this:

The eXtension tutorials will use these objects from the AXESDEMO library:

Object Type Comment
XHRRPGTRN *PGM 5250 Employee Maintenance Program
XHRRPGTRND *DSPF Display file used by program XHRRPGTRN
XHRBU *PF Physical file of Business Units
XHRBU01 *LF View of Business Units
XHRDEPT *PF Physical file of Departments
XHREMPTN *PF Physical file of Employees
XHREMPTN01 *LF View of Employees
XHREMPTN02 *LF View of Employees

Check your aXes Server Settings (aXes upgrades only)
Do not check this if you have installed a brand new aXes system.

Do check this if your aXes system has been upgraded from 1.32 (or earlier).

Locate your aXes W3 configuration file.

Typically it is located in folder axes/configs and named aXesW3.conf.

Edit the file and locate the PostLimit directive. It may look like this:

The maximum allowed size of data POSTed to the transaction server
PostLimit=5000

Change the line to be like this:

The maximum allowed size of data POSTed to the transaction server
PostLimit=12000

Note that the PostLimit directive is no longer a comment and it has been changed to
12000.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 0 - Getting Started , Page 7 of 407
407

If you need to change this file, save the changes and stop and restart your aXes server
instances so that the change takes effect.

Set up an eXtensions Project
Create a new short cut onto your workstation's desktop:

Location http://<your aXes host>/ts/dev/index.html
Name aXes Projects Home Page

replacing <your aXes host> with the appropriate IP address and port number.

For example:

It should appear on your desktop like this:

Use the new shortcut to open the aXes Projects Home Page.

When requested, enter the aXes developer user profile and password.

Note: The shipped defaults are User Name: dev, Password: dev
You should change these default values.

The aXes Projects Home Page should now be displayed, something like this:

http://lansa08:8310/ts/dev/index.html

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 0 - Getting Started , Page 8 of 407
407

Decide on a unique name for your aXes project.

Note: Your chosen project name should be short and consist of only letters from the English alphabet
and numbers. For example, MyProject1 or PaulProject2 would be good names. If existing projects are
shown in the list on the right, use a name for your new project that is not already shown in the list.

Click on the Create a new Project … option.
The resulting display should look like this:

Note the warning about backing up your IFS project folders.

Enter a name and description for your project.

Then click the Create Project button.

A message like this should appear:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 0 - Getting Started , Page 9 of 407
407

Close the Projects Home Page now.

Note: While learning to use eXtension is it common to have a private or personal project. However,
when working on a real project you should create just a single project that all the developers on the
project work within. Projects are discrete entities and cannot be merged.

Please start Tutorial 1 now.

eXtensions Tutorial 1 - Screen and Field Identification

Objectives In this tutorial you will learn about screen signatures,
how to identify and name screens, and define names
for fields.

Prerequisites Getting Started tutorial

Before attempting this tutorial please complete all of
the steps in the Getting Started tutorial.

Outline Screen identification – screens created without DDS

Screen identification – screens created using DDS

Documentation Library

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 1 - Screen and Field Identification , Page
11 of 407 407

Screen identification - Screens created without DDS

Use your desktop shortcut to open the aXes Projects Home Page.

When requested, enter the aXes developer user profile and password.

The shipped defaults are,

User Name: dev, Password: dev

You should change these default values.

On the Projects Home Page, click on your project in the projects list on the
right.

On the resulting screen, click on the Work as TS2 Developer option.

A 5250 Terminal Session sign on prompt should appear next:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 1 - Screen and Field Identification , Page
12 of 407 407

Sign on with an IBM i user profile and password that displays the Main Menu.

When identifying 5250 screens for subsequent use in an aXes-Cloud environment
ensure you are executing them in the same way that your end users will.

Refer to the "If You Use aXes-eXtensions with aXes-Cloud" section in the Best
Practices tutorial for an explanation of the reasons this is important.

The next screen should look something like this:

On the left side is a tab titled Screens - this is used to identify 5250 screens
and the fields on them.

On the right side is a 5250 session you can use just like any normal 5250
session.

Hint

5250 sessions used when logged on as an aXes developer are much slower than
normal aXes user 5250 sessions.

 Warning

You should only ever use aXes developer 5250 sessions for aXes development work.

For other development work, like writing RPG programs, use normal user aXes 5250
sessions.

You should never assess the performance of your application using an aXes developer
session.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 1 - Screen and Field Identification , Page
13 of 407 407

You are now going to identify the Main Menu screen and assign a name to the
field on the screen where commands are typed in.

First, click the Suggest button on the Screens tab - aXes will examine the
screen and suggest a name and a description.

Next, lock the screen for design by using the switch in the top right corner
of the screen. Always lock the screen for design before customising it.

Then Click on the screen title on the 5250 screen to select it (e.g. IBM i Main
Menu, System i Main Menu or i5/OS Main Menu). This should highlight the field
in the Screens tab on the left.

Check the box beside the field.

Your Screens tab should now look like this:

Change the screen Name to MAIN.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 1 - Screen and Field Identification , Page
14 of 407 407

Naming Conventions

Choose names for screens and screen elements like you would name a variable in a
programming language.

Use only letters of the English alphabet, the numbers 0 to 9 and _ (underscore).

Do not use imbedded blanks in names.

Names are case sensitive.

Change the screen Description to IBM i Main Menu.

Click the Save button to save the definition of the screen you have called MAIN.

To check that aXes now identifies the MAIN screen correctly, display a different
5250 screen by entering the IBM i command WRKJOB.

You should see the Possible Matches list on the Screens tab change to say
<new definition> indicating that the Work Job screen currently has no name.

Return to the main menu and you should see the Possible Matches list change
to indicate that this screen name is MAIN.

With the MAIN screen displayed, select the field where commands are entered
by clicking on it. This should automatically select the field on the Screens tab
and scroll down to it.

Type in the name CommandLine for the field.

Your Screens tab should now look like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 1 - Screen and Field Identification , Page
15 of 407 407

Click the Save button again to (re)save the definition of the screen called MAIN.

Hint

Before starting a real project you should create a naming standard for screens and
fields.

You have now completed these tasks:

1. Identified the Main Menu screen and assigned it the name MAIN.

2. Named the command input field as CommandLine.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 1 - Screen and Field Identification , Page
16 of 407 407

The Output Field Dilemma

When a field is not really a field - it's just a bit of output text

Usually, output fields are correctly recognised as starting at the beginning of the
field. This means that when named, they continue to be recognised, no matter
what value they contain.

But in one special case, when the record format does not define the fields, (as in
for example the "fields" on the WRKSYSSTS screen), aXes works out the field
start position based on the field contents. For right-adjusted numeric fields, this
means that when the screen is redisplayed with a value with more digits, the
start position of the "field" changes, and since aXes identifies fields by their start
position, it does not recognize the text as belonging to the same field.

You should be aware of this special case when naming fields:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 1 - Screen and Field Identification , Page
17 of 407 407

Screen identification - Screens created using DDS

Next you are going to identify two application screens created by normal DDS.

To do this start the shipped aXes demo system from a command line by entering
the commands:

ADDLIBLE AXESDEMO

CALL XHRRPGTRN

The resulting 5250 screen should look something like this:

On the Screens tab, click the Suggest Button.

Change the suggested screen name to XHRRPGTRN_Select

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 1 - Screen and Field Identification , Page
18 of 407 407

Remember to choose names for screens and screen elements like you would name a
variable in a programming language.

Use only letters of the English alphabet, numbers 0 to 9 and _ (underscore).

Do not use imbedded blanks in names.

Names are case sensitive.

Click the Save button.

You have now assigned the name XHRRPGTRN_Select to this particular 5250
screen.

Next, enter an X beside an employee and press the Enter key to display the
employee information.

The resulting 5250 screen should look something like this:

Check that your Screens tab says this is a new (unnamed) 5250 screen.

On the Screens tab, click the Suggest Button.

Change the suggested screen name to XHRRPGTRN_Maint

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 1 - Screen and Field Identification , Page
19 of 407 407

Click the Save button.

You have now assigned the name XHRRPGTRN_Maint to this particular 5250
screen.

Now, double check that aXes correctly identifies the named screens.

To do this, return to the IBM i main menu, then call program XHRRPGTRN again.
Make sure the selection screen and the details screen are correctly identified on
the aXes Screens tab as you navigate between the screens.

You have completed this tutorial are now ready to proceed to the next tutorial.

Screen Signatures and the
Concept of a "5250 Screen"

Did you notice how you did not have to select screen elements to identify the
preceding two screens? Since they were created from DDS they each have a
unique "signature". Their unique signatures were enough to identify each screen
as being different.

That is an easy rule to remember – a different screen signature means use a
different screen name. Unfortunately it's not quite that simple - sometimes
screens with different signatures are given the same screen name.

This is usually done when different screen signatures actually represent subtle
variations of what is considered to be the same 5250 screen. In these cases the
variant name may also be used to identify different variations of the same
screen name.

The key question: What is a "5250 screen" exactly?

There is no answer to that question.

Imagine an RPG program, using display file DSP, to display records named
HEAD, BODY and FOOT (say) onto a 5250 screen. The visual result of this is said
to comprise a 5250 screen named "Screen1" (say).

However, what if under some circumstances, it displays records HEAD, BODY,
BODY_EXT and FOOT.

Is the resulting 5250 screen a new screen, or just a variation of "Screen1"?

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 1 - Screen and Field Identification , Page
20 of 407 407

There is no correct answer to the preceding question, because the thing that is
called "Screen1" is really just a concept.

Both possible answers are equally correct - so aXes eXtensions allow you to
answer the question either way.

If you decide these are two variations of the same screen you simply say this …

Signature Name

DSP+HEAD+BODY+FOOT "Screen1"

DSP+HEAD+BODY+BODY_EXT+FOOT "Screen1" with variant name
"BODY_EXT"

Or, if you decide they are different screens, you say this ...

Signature Name

DSP+HEAD+BODY+FOOT "Screen1"

DSP+HEAD+BODY+BODY_EXT+FOOT "Screen2"

So what exactly is a "5250 screen"?

It's whatever you want it to be.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 22 of 407
407

eXtensions Tutorial 2 - Basic Screen Enhancement

Objectives This tutorial teaches you how to customize 5250
screens by hiding screen elements and adding new
screen elements using aXes eXtensions.

Prerequisites Tutorial 1 - Screen and Field Identification

Before attempting this tutorial, please complete all
of the steps in Tutorial 1.

Outline Using aXes Developer

Simple customization

Adding value using customization

Adding value using scripting

Testing customizations as a user

Screen identifier/design concepts

Documentation Library

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 23 of 407
407

Using aXes Developer

Use your desktop shortcut to open the aXes Projects Home Page.

Sign on as an aXes developer and select your project from the list on the right.

On the next screen, click on the Work as TS2 Developer option. This will start
an aXes developer session.

Sign on to a 5250 session and display the Main Menu.

The white background around the open padlock in the tool bar at the top right of
the screen panel indicates that the screen is unlocked. The closed pad lock is
greyed.

Click on the eXtensions tab and then lock the screen by clicking the closed
padlock icon on the top right of the screen.

Selecting objects to customize

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 24 of 407
407

Click the Screen object in the Extendable Objects list.

Click the eXtensions action button (in the eXtensions bar) and choose the
Customize Screen option from the eXtensions Actions list.

The eXtensions panel shows the basic object properties.

What is the thin red line?
If you look closely at your 5250 screen panel, you may see red, dotted lines
around the screen. These lines represent the boundaries of this 5250 screen.
You can move the boundaries to create more space on your 5250 screen.
Tutorial 10 – 5250 Screen Styling explains how to move the screen boundaries.

 Warning: Do not place any screen element outside the screen boundaries.

aXes Developer window

The aXes Developer window changes layout and content depending on the object
selection. To understand how this works, it is worth looking at the layout of a
typical aXes Developer window in a little more detail.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 25 of 407
407

The body of the aXes Developer window contains a list of screen objects and
property sheets. If you have used almost any other visual development tools,
you will have seen similar property sheets.

The following table explains the parts of the aXes Developer window.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 26 of 407
407

Basic actions button The button opens a list of actions available for the
basic properties.

Extension List The Extension List contains a list of extensions that
can be dragged and dropped onto the screen panel.

Extendable objects The Extendable Objects opens a list of objects already
existing in the screen panel.

eXtensions The eXtensions panel contains details of the selected
object, properties and property values for extending
the selected object. For example, the Visible property
shows or hides the selected object.

eXtensions actions
button

The button opens a list of actions available for an
extension.

Property name / value Each property has a name (on the left) and a value
(on the right). Change the value (on the right) to
change the behaviour of a screen or screen element.

Selected object
details

The details describe the object type and placement on
the screen.

Selected object
properties

eXtensions Basic
The Basic panel contains properties defining how
selected object behaves.

Selected object
visualization

eXtensions Default Visualization
The Default Visualization panel contains properties
defining the appearance of the selected object.

Tool bar The tool bar contains buttons including save, cancel,
undo, redo and reset.

Visualization actions
button

The button opens a list of actions available for the
visualization properties.

Extendable object
actions button

The + button adds a user field onto the screen panel.
The – button deletes the selected user field or element
on the screen.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 27 of 407
407

Simple customization

Hide screen elements

With the Main Menu 5250 screen and the aXes Developer window displayed,
click on the text Select one of the following: to select it.

Your screen should now look like this:

The aXes Developer window shows the selected element, i.e. the output text,
"Select one of the following:" inside a selection box with sizing handles.

Click the extensions action button (in the eXtensions bar) and choose the
Customize Field option from the eXtensions Actions List.

In the eXtensions area of the aXes Developer window, uncheck the Visible
property.

Do not remove the default visualisation.

Click the Save button.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 28 of 407
407

The 5250 screen no longer shows the text.

In this example, aXes does not display the hidden text. Nevertheless, the text
remains as a screen element.

Hiding a screen element does not delete the element from the screen.

You have now completed the simplest task of screen enhancement – hiding a
screen element.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 29 of 407
407

Screen enhancement techniques

In most cases, enhancing 5250 screens uses three main techniques:

1. Change visualization
Causing 5250 screen elements be visualized in a different way, e.g. as a
check box, drop-down list, hidden, etc.
Tutorial 3 deals with this area in depth.

2. Add new capabilities
Add new capabilities to 5250 screen elements, e.g. transforming a date
field into a date picker.
Tutorial 3 also deals with this topic.

3. Introduce new elements
Add brand new elements to the 5250 screen to improve its appearance or
allow it to perform new operations that add value to the underlying
application, e.g. adding push buttons and scripts.
Adding value is the focus of the rest of this tutorial.

Add a group box

You are now going to add a group box to the MAIN screen. There are two ways
to add a user field to the screen:

1. Select Group Box from the Extension Toolbox then drag and drop onto
the screen panel.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 30 of 407
407

The sizing handles appear on the group box on the screen panel and
include the text, Group Box.

2. Click Add User Field () button to add a user field.

 A new user field will appear on the screen as a box with sizing handles.

 Next, you define what type of user field you wish to use.

 Double-click the user field and aXes will display a list of eXtensions.

 Choose Group Box from the list and click the Add button.

Change its caption property value to Select an option:

You can click on and drag the sizing handles to resize the group box.

Enlarge the group box so that it surrounds the menu items.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 31 of 407
407

When you finish, the screen will look similar to this:

You have added a group box to customize the MAIN screen.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 32 of 407
407

Using screen customization to add value

In the preceding section, you added a group box to the MAIN screen. This adds
some value to the application from the visual perspective, but adds nothing from
the usability perspective.

You are now going to add new buttons to the MAIN screen that add usability
value to the 5250 screen.

Add a button

Select Push Button from the Extension Toolbox and drag and drop it onto the
screen panel. Or click the Add User Field button.

Move the new button to the right-hand side of the screen.

Change the button's caption to QPRINT Queue.

The caption property is in the lower panel of the aXes Developer window.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 33 of 407
407

The screen should look like this:

Click the Save button to save your MAIN screen customizations.

You have added a push button to customize the MAIN screen.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 34 of 407
407

Using scripting to add value

Add buttons and scripts

This section explains how to add a script to a button.

Click on your new QPRINT Queue button to select it, and look at its property
sheet:

The caption, style, and sizeToField properties are static and are evaluated
literally from what is displayed, i.e. the caption is taken literally from the text
you typed in as QPRINT Queue. You can edit these by clicking the value field
directly.

The onClick, onFocus and onBlur properties are action properties and perform a
JavaScript operation. The onClick property tells aXes what to do when a user
clicks the QPRINT Queue button, and in this example, the JavaScript code
SENDKEY(ENV.defaultKey); will be executed.

 Almost all properties can be evaluated as JavaScript code. This is a very powerful,
flexible and dynamic feature that is dealt with in more detail in following tutorials.

Without going into the details right now, as the name suggests, the
SENDKEY(ENV.defaultKey); JavaScript function call sends a key stroke
corresponding to the Environment default key into the 5250 session. Typically,
this is the Enter key, unless a different default key has been specified.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 35 of 407
407

Clicking the QPRINT Queue button acts just like pressing the Enter key.

You are now going to change what happens when the QPRINT Queue button is
clicked.

Click the Edit Script button adjacent to the onClick property.

A small editor window like this should appear:

Select and delete the SENDKEY(ENV.defaultKey); code.

Copy and paste the following code into the edit window.

var F = FIELDS("CommandLine");

F.setValue("WRKOUTQ QPRINT");

SENDKEY(ENV.defaultKey);

The editor window should look like the next screen.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 36 of 407
407

Click OK in the editor window to apply your changes to the property value.

What does this code do? It locates a reference to the field you have named
CommandLine on the current MAIN screen (remember, you assigned this name
in Tutorial 1). It then sets the CommandLine screen field to the value
"WRKOUTQ QPRINT", and finally presses the Enter key.

In short, pressing the QPRINT Queue button should now execute the IBM i
WRKOUTQ QPRINT command.

This is a short cut way to display the IBM i output queue named QPRINT.

It adds value to the application because it makes displaying the output queue
faster, especially when you display the output queue QPRINT frequently.

Next, to facilitate the following tutorials you need to add two more button
eXtensions to the MAIN screen.

Follow the same steps you used when adding the QPRINT Queue button.

First, add a button with the caption Add aXesDemo to Library List that
executes this code when clicked:

var F = FIELDS("CommandLine");

F.setValue("ADDLIBLE AXESDEMO");

SENDKEY(ENV.defaultKey);

Then, add another new button with the caption aXes Demo HR System that
executes this code when clicked:

var F = FIELDS("CommandLine");

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 37 of 407
407

F.setValue("CALL XHRRPGTRN");

SENDKEY(ENV.defaultKey);

Save your screen customizations.

Your customized version of the MAIN screen should now look something like
this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 38 of 407
407

Testing customizations
 Always test your customizations as a user.

You can test your screen customizations while logged on to aXes as a developer,
but you must always also test your application while logged on as a user.

To test as a user, open the Projects Home Page.

Select your project, and then use the Work as a User (aXes-TS2) option to
start aXes.

Log on and verify that the customizations on the MAIN screen display correctly
and try out the new buttons.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 2 - Basic Screen Enhancement, Page 39 of 407
407

Screen identifier/design concepts

When you use aXes eXtensions you need to understand the terms screen
identifier and screen design.

Screen identifier When you save customizations, screen identification
information goes into a .scn file (for example 14.scn).
This file is referred to as a screen identifier file.

Screen design The design customizations go into a file named:
screen_<screenname>.js
This file is referred to as a screen design file.

A screen identifier uniquely identifies one variation of a screen. A variation can
be, for example, a screen in display mode, and another variation can be the
same screen in update mode. Both variations have their own screen identifiers.

If a screen has been customized, the screen identifier points to the screen
design. When there are variations of a screen, all screen identifiers point to the
same screen design.

eXtensions Tutorial 3 - Advanced Screen Enhancement

Objectives This tutorial teaches you how to customize 5250
screens by moving and hiding screen elements, and
adding new screen elements using aXes eXtensions
including dates, dropdown lists, group boxes,
hyperlinks, images, push buttons, and radio buttons.

Prerequisites Tutorial 2 – Basic Screen Enhancement

Before attempting this tutorial, please complete all of
the steps in Tutorial 2.

Documentation Library

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 41 of 407 407

Outline What this tutorial covers

Screen and field names

What’s the plan?

Getting assistance

Setting up your styles

Defining styles

Why are styles important?

Adding a stripe

Moving elements, changing labels and captions

Move and resize screen elements

Hiding screen elements

Applying styles

Tooltips

Dates

Radio buttons

Drop down lists

Using row and other scripting objects

Push buttons

Multi-lingual text

Group boxes

Images

Hyperlinks

Finish the screen customization

Testing customizations

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 42 of 407 407

What this tutorial covers

Tutorial 3 focuses on customizing this 5250 screen:

By the end of the tutorial, you will be able to make it look and act like this:

The screen customization includes these areas of visual customization and
functional enrichment:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 43 of 407 407

 Features Tutorial Topics

 Styles and
styling

Defining and using styles.
How to style screen elements by their role.

 Moving, hiding
and enhancing

Understand how to move things around the screen.
Hide and alter screen content.
Use tool tips (hints) as a substitute for long labels.

 Group Boxes Use group boxes and stripes to visually group and
draw attention to information.

 Radio Buttons How to use radio buttons.

 Dates How to change the way that dates are displayed and
adding calendar pickers.

 Drop Downs How to add drop downs or combo boxes.

 Images How to add images.

 Hyperlinks How to add hyperlinks to display associated
information.

 Buttons How to add buttons and script what happens when
users click them.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 44 of 407 407

Screen and field names

This section defines screen and field names used in all tutorials.

You don’t have to read this section just now. It is a reference point for this and
following tutorials.

The screens are XHRRPGTRN_Select and XHRRPGTRN_Maint.

You can display the screens by adding AXESDEMO to your library list, and then
calling the program XHRRPGTRN.

XHRRPGTRN_Select and its field names

This is the XHRRPGTRN_Select screen, with its fields named as indicated:

XHRRPGTRN_Maint and its field names

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 45 of 407 407

This is the XHRRPGTRN_Maint screen, with its fields named as indicated:

What’s the plan?

It’s important to have a 5250 screen customization and enhancement plan.
Creating a plan will ensure that the look and feel of the screens remains
consistent after customization, and help you to allocate a priority to the screens
you intend to customize – work on the most important screens first.

In this tutorial, the plan is to customize this 5250 screen:

The customization will add these visual and functional eXtensions to the screen:
styles, a stripe, date pickers, a radio button, drop downs, buttons, group boxes,
an image and hyperlinks.

The outcome of the customizations will look like this screen.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 46 of 407 407

Getting assistance

While completing these tutorials you can get information from the product
documentation. This is a sample page from the eXtensions Guide.

The aXes Technical Documentation Index provides a list of the documents.

Setting up your styles

Up until now, you may have used one of the shipped basic 5250 themes, e.g.
blue or default, to change the appearance of your aXes 5250 application.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 47 of 407 407

Once you start customizing an application you should stop using the basic 5250
themes and develop your own customized role-based styles and themes.

What follows in this tutorial covers the basics of screen styling.

Later you should review Tutorial 10 – 5250 Screen Styling to obtain an in depth
understanding of what you can do with customized styles and themes.

Also refer to Tutorial 15 – Jquery Styles to enhance the overall appearance by just
selecting a jQuery theme.

Defining styles

To get started with customized styles and themes you need to define some
styles.

The next task will add styles for background, font, key information and screen
title. You will use the styles later in the tutorial.

Open the Projects Home Page.

Select your project, and then use the Work as TS2 Developer option and sign
on to a 5250 session.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 48 of 407 407

In the aXes Developer window, click Application in the Extendable Objects
list to view the application properties. No need to put in edit mode, it's already
editable.

Locate the Styling bar at the bottom of the aXes Developer window.

Click on the Edit Items button adjacent to the styles label.

aXes will display the Edit Items window.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 49 of 407 407

Click on the plus button [+] to add a style item.

Use the following property values for the background style.

Name BasicWindowBackground

styleFor Application Window

htmlTag

style

theme

for5250Attributes

Click the Edit Styles button in the style property.

Input the following into the Edit Styles window, then click OK.

background: #9cc1e5 url('/ts/skins/images/bluebgimg.jpg')
repeat-x top left

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 50 of 407 407

This will set the image (bluebgimg.jpg) as the screen background.

Next, add the font, key information and screen title styles.

Click on the plus button [+] to add an item for the font style.

Use the following property values for the font style.

Name BasicFont

styleFor All

htmlTag

style Click the Edit Styles button, input the following into
the Edit Styles window, then click OK.

font-family:Verdana

font-size:9pt

theme

for5250Attributes

Click on the plus button [+] to add an item for the key information style.

Use the following property values for the key information style.

Name KeyInformation

styleFor

htmlTag

style Click the Edit Styles button, input the following into
the Edit Styles window, then click OK.

color:blue

theme

for5250Attributes

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 51 of 407 407

Click on the plus button [+] to add an item for the screen title style.

Use the following property values for the screen title style.

Name ScreenTitle

styleFor

htmlTag

style Click the Edit Styles button, input the following into
the Edit Styles window, then click OK.

font-style:italic

theme

for5250Attributes

When you finish adding the styles the Edit Items window should look like this:

Click the OK button to close the Edit Items window.

Click Save button to apply the changes.

To see the effect of your styles:
Sign off from your aXes development session.
Close the browser window.
Start your aXes development session again.

You should see the result of the BasicWindowBackground style.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 52 of 407 407

Why are styles important?

You define styles so that screen elements can be quickly associated with their
visual display characteristics or rules, e.g. all screen titles are to be displayed in
italics, and screens will have a blue background.

 Styling is a sophisticated feature and there is another tutorial dedicated to styling.

The benefits of using styles are compelling.

Standardization Styles produce standardization, which is essential to
produce a common look and feel, and to prevent
unconstrained style use of styles.

Single point of change Styles provide a single point of change.
What do you do when the marketing people decide
screen titles should be italic/green this week and
bold/blue next week?
Using styles simplifies the change, e.g.
This week - font-color: green; font-style: italic;
Next week - font-color: blue; font-style: bold;

If by default a style is to be applied to all instances of an eXtension (e.g. we
want all buttons to have the same appearance), the style should be applied to
the button eXtension template instead of applying the change to each button
instance, as this saves you from having to assign a style to individual buttons.

Please refer to FAQ – Customizing eXtensions for more information on how to
customize an eXtension template.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 53 of 407 407

Adding a stripe

In our customization plan there is a "bar" or "stripe" across the top of the 5250
screen. After you have added the stripe to the top of your 5250 screen, it will
look like this:

Open the Projects Home Page.

Select your project, and then use the Work as Developer option, and sign on to a
5250 session.

Add library AXESDEMO to your library list and call program XHRRPGTRN using
the buttons you created in the previous tutorial.

Select one of the displayed employees with an X and press enter. The resulting
5250 screen will look something like this:

You identified this screen as XHRRPGTRN_Maint in a previous tutorial.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 54 of 407 407

Check that the name in the Screen Definition shown on the Screens tab in the
Developer window is XHRRPGTRN_Maint.

 If the name is not XHRRPGTRN_Maint, or you do not understand why it is
XHRRPGTRN_Maint, please complete all the preceding tutorials before going
any further in this tutorial.

Click Screen in the Extendable Objects list and then choose Customize
Screen from the eXtensions actions button (in the eXtensions bar of the
Developer window).

By default, screen XHRRPGTRN_Maint uses the same styles as the basic, un-
customized 5250 screens. Since we are going to heavily enhance this screen,
you need to prevent this by changing the useTerminalStyles property to false.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 55 of 407 407

The useTerminalStyles property is in the Basic properties below the eXtensions
bar. Uncheck the useTerminalStyles property.

After unchecking the use Terminal Styles property, click the Save button.

You should see your screen change as the BasicFont style takes effect.

Now you are going to change the top of the screen from this:

To this:

Do this by adding a new element to the screen.

Add an eXtension by selecting Simple Stripe from the Extension Toolbox then
drag and drop it onto the screen panel.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 56 of 407 407

Change the stripe's context to Mini-Panel Heading.

Move and position the stripe so that it sits below the screen name, above the
Department Abbreviation label, and spans the screen width.

Save your changes.

The customized screen will look similar to this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 57 of 407 407

Moving elements, changing labels and captions

The objective of this task is to change the screen appearance by manipulating
screen elements e.g. labels and fields.

Move and resize screen elements

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed.

The label "Department Abbreviation .." on the 5250 screen can be made shorter.

Click on the label Department Abbreviation to select it and choose Customize
Field:

Change the value property to the word Department (the value property is in
the Default Visualization).

Now move the label up onto the stripe:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 58 of 407 407

Your screen should show the word Department in the bar at the top left-hand
side of the screen.

Save your changes.

How to move screen elements

You can move elements around either by dragging them with the mouse, or by
using the arrow keys (you must select an element before you can move it).

To move multiple elements as a group, draw a box around them (in screen edit
mode). Any element that is fully or partially within the box will be selected. All
the selected elements can be moved (or sized) together.

The keyboard shortcuts for moving screen elements are:

Right Arrow Move to right

Left Arrow Move to left

Up Arrow Move up

Down Arrow Move down

How to resize screen elements

To resize an element, or a group of elements, use the mouse to click on one of
the element's sizing handles and drag the element to the size you want.

Hiding screen elements

The objective of this task is to hide the screen identifier.

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed.

Click on the screen identifier XHRRPGTRN to select it and choose Customize
Field from the eXtensions actions button (in the eXtensions bar of the Developer
window).

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 59 of 407 407

Uncheck the visible property, then save your changes and unlock the screen.

The screen identifier, XHRRPGTRN, will no longer appear on the screen.

You have now used three essential skills of screen enhancement:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 60 of 407 407

 Simplification or replacement of long text

 Moving screen elements

 Hiding screen elements

Using these skills, you should be able to rearrange the 5250 screen elements so
that the top of the screen looks something like this:

Move the business unit label and field, the employee identification label and
field, and the screen title into the bar beside department.

The exact location of a customized screen element is visible in its basic style
property. You can manually change these values to move elements around the
screen.

Sometimes the manual approach is an easier and more accurate way to very
precisely align fields.

Save your changes.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 61 of 407 407

Applying Styles

The top bar of the 5250 screen now contains three pieces of key information
(department, business unit and employee ID), and the screen title. These fields
can now be associated with a style to give them their specific visual
characteristics.

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed.

Click on the department code "ADM" (or whatever code is displayed) to select it.

In the Basic properties sheet, click the Edit Styles button adjacent to the style
property.

Select the base style from the dropdown list: KeyInformation

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 62 of 407 407

Click OK and save your changes. You can see the effect of the changes.

The colour of the Department Abbreviation text has changed to blue. You
defined the colour when you created the KeyInformation style earlier in this
tutorial.

Apply the KeyInformation style to the Business Unit field.

Apply the KeyInformation style to the Employee ID field.

Next, select the screen title and apply the base style as ScreenTitle

The top of the 5250 screen will look similar to this:

The text in the fields is blue and the screen title text is italic.

Using styles will save you time and effort. If you customize 20 screens and then
decide that you want to change the screen title text to be italic and blue, you
only have to change the style (i.e. the ScreenTitle style), not individual style
properties in all 20 screens.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 63 of 407 407

Tooltips

You can add hints or explanations to fields by adding a tooltip. Tooltips provide
more meaningful details than a short or abbreviated label.

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed,
click on the Business Unit code, then choose Customize Field and select
Tooltip from the Add eXtensions list.

Select the tooltip property in the Basic property sheet, and set it to this text
(copy and paste from this):

This code is the business unit that the employee currently
works for. It is often referred to as their "BU" code. Their id
badges must always display this code or they may be refused
admittance to company premises.

This tooltip is just plain text. When you add the text, the property field should
have the pencil symbol on the right hand side. The gear symbol will be greyed.

You can change the type of property value you wish to enter by clicking on the
gear symbol on the right hand side of the tooltip property. The gear symbol
indicates that this property will be evaluated by executing the script that is
displayed.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 64 of 407 407

If you want to dynamically create the tooltip by executing a script, then the
script you need for this example is:

ENV.returnValue = "This code is the business unit that the
employee currently works for. It is often referred to as their
\"BU\" code. Their id badges must always display this code or
they may be refused admittance to company premises.";

Save your changes.

When you hover the mouse over the business unit code, you will now see the
tooltip:

Managing long text in tooltips

If you require a lot of text for your tooltips (i.e. hints or explanations), create
the tooltips in a word processing tool (e.g. Microsoft Word) where you can
perform a spelling and grammar check.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 65 of 407 407

When the text is ready, copy and paste it into your screen definitions, or use
CTEXT("Tooltip.0001") type scripting references to externalize the definitions
and multilingual translations.

 You must use a Unicode capable text editor when editing multilingual strings.
The multilingual section of this tutorial provides more details.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 66 of 407 407

Dates

This task adds a calendar date picker to the date fields.

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed,
double-click Employee Date of Birth, and the add eXtension list window is
displayed.

Select Date from the Add eXtension list.

Click the Add button and the date eXtension will appear on the screen.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 67 of 407 407

In the date property sheet, change the dateFormatDisplay and the
dateFormatServer property values.

dateFormatDisplay day dd month yyyy

dateFormatServer dd/mm/yy

The dateFormatServer property must match the format of the date as it appears
on the uncustomized screen. We used dd/mm/yy to match the date format
shown on the uncustomized screen used in the tutorial. On your machine, the
format may be different.

If you cannot find a format that matches the format used to display your dates, you
can change the dateFormatServer property to a script, and set it to any valid jQuery
date format, using the script:

ENV.returnValue = "dd-mm-y";

See http://docs.jquery.com/UI/Datepicker/formatDate for valid jQuery date formats.

Widen the field to the right so that you can see the full date.

Save your changes.

The Employee Date of Birth field is now displayed like this:

The date is displayed in a long format and has a date picker (calendar) that can
be invoked by clicking the red calendar icon.

You can control date options using their various properties.

The defaults for the various date formats can be set by changing the global defaults
used by the Date eXtension or even programmatically by scripting. You can do this
for most properties in most eXtensions. Changing the default value for a property in
an eXtension is more efficient than changing the property repeatedly.

Repeat this process for the Employee Start Date and the Termination Date.

Save your screen changes.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 68 of 407 407

After the changes, the screen will look something like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 69 of 407 407

Radio Buttons

This task will transform the Employee Gender field into radio buttons.

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed,
double-click Employee Gender and add eXtension window is displayed.

Select Radio Button from the Add eXtension list.

Click the Add button.

aXes will insert a radio button extension and the screen will look like this:

Next, we need a value for each radio button.

Radio button values can be created from multiple types of input sources. In this
case, we are going to use the simplest source, a table of fixed values.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 70 of 407 407

Look at radio button property sheet:

Change the value of the dataSourceType property to
Fixed Values.

Change the value of the orientation property from
vertical to Horizontal.

Then, click the Edit Items button adjacent to the
fixedValues property.

The Edit Items window will appear where you will
define a value and label text for each radio button.

The empty Edit Items window looks like this:

The value determines what will be checked for and put into the 5250 entry field
by the radio button. The label text determines what is displayed beside the radio
button.

Click the plus button [+] in the Edit Items window and add two items:

Item Value
(inserted in the real 5250 field)

Text
(displayed beside the radio
button)

1 Male Man

2 Female Woman

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 71 of 407 407

After you finish the Edit Item windows should look like this:

Click OK to close the Edit Items window.

Save your changes.

Your screen should look something like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 72 of 407 407

Drop down lists

This task will transform the State and Country fields into drop downs (i.e. list
boxes).

The data used to fill drop downs can come from static tables, dynamic tables
(created by SQL commands), XML documents or simple static lists.

 A separate tutorial covers the possibilities for supplying data to fill drop down lists
and ways that you can use them.

In this tutorial you are going to use server based static tables shipped with aXes
as the data source for the drop down lists.

State field drop down

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed,
double-click State, an add eXtensionv window is displayed.

Select Dropdown from the Add eXtension list.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 73 of 407 407

Click the Add button.

aXes will insert a dropdown extension and the screen will look like this:

Next, we need to define a data source type and a data source.

Look at the dropdown property sheet:

Change the value of the dataSourceType property to
Static Table.

Change the value of the tableName propertyto
USState.

Widen the state field on the 5250 screen so that the
state names fit in the window width.

Save your changes.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 74 of 407 407

Your screen will now show a state code drop down like this:

Country field drop down

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed,
double-click Country, and add eXtension window is displayed.

Select Dropdown from the Add eXtension list.

Click the Add button.

aXes will insert a dropdown extension.

Next, we need to define a data source type and a data source.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 75 of 407 407

On the dropdown property sheet, change the value of the dataSourceType
property to Static Table.

Change the value of the tableName property to ISOCountry (the table name is
case sensitive, so ensure you use the exact spelling and upper and lower case).

Widen the state field on the 5250 screen so that the country names fit in the
window width.

Save your changes.

Your screen will now show a state code drop down like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 76 of 407 407

Dropdowns have many options for sources of data, presenting the data, and can
initiate actions when a user selects a drop down item. Using these features drop
downs can be used to achieve clever and useful screen interactions. For
example, imagine you want the country drop down to show the country code
and the full name of the country.

Put the screen in edit mode and select the country code drop down.

Look at the dropdown property sheet:

Click the Edit Script button adjacent to the
onFillDropDown property.

Copy this code into the Edit Script window.

ROW.value + " (" + ROW.text + ")"

Click OK and save your changes.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 77 of 407 407

The Country drop down will now look like this:

As you may imagine, this ability to script what happens as the drop down is filled
and what happens when a user selects an item can be used in many clever and
useful ways.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 78 of 407 407

Using ROW and other scripting objects

In the preceding example the ROW scripting object was used. In scripts that
process table information, it is shorthand scripting used to refer to the "current"
ROW in the table.

There are other shorthand objects you can use in your scripting:

Objects Description Example of Common Methods

FIELD The specific field
bound to the
extension.

FIELD.getValue()
FIELD.setValue("ADM")

FIELDS Gets a reference to
any named field on
the current screen.

FIELDS(“CustomerName”).getValue()

CTEXT Shortcut for
TEXT.cust

CTEXT(“label001”).
Retrieves the customer text
associated with the key value
"label001".

SENDKEY Send key SENDKEY(“Enter”)
SENDKEY("F4")

TRACE Traces values into the
trace window.

TRACE("Button 1 clicked")

DEBUG Shortcut for
AXES.Debug.output

LANGUAGE Current language
code

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 79 of 407 407

Push Buttons

This task will hide the function keys and replace them with push buttons.

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed,
select Push Button from the Extension Toolbox then drag and drop it onto the
screen panel.

Repeat these steps, selecting then dragging and dropping Push Button onto the
screen, until you have three push buttons.

Select each button in turn and edit the script for the caption and onClick
properties.

First Button caption CTEXT("Save Changes");

 onClick SENDKEY("Enter");

Second
Button

caption CTEXT("Cancel Changes");

 onClick SENDKEY("F12");

Third Button caption CTEXT("Delete All Details");

 onClick SENDKEY("F22");

Click the Edit Script button adjacent to the property to open the Edit Script
window. You can copy and paste the script from the table above.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 80 of 407 407

This is an example of editing the script for the caption property of the Save
Changes button.

Move the buttons to the bottom right-hand side of the screen.

Select the F12=Cancel object and hide it by unchecking its visible property.

Select the F22=Delete object and hide it by unchecking its visible property.

Your screen will look like this:

Save your changes.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 81 of 407 407

The F12=Cancel and F22=Delete text at the bottom of the 5250 screen is screen
text, just like the text "Employee Title". There is nothing special at all about this text.
Its presence or absence in no way influences what function keys are actually enabled
by the screen.

The Save button was added for the Enter function key. In most good GUI designs all
function keys generally have an associated button.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 82 of 407 407

Multi-lingual text

If you are not concerned about multi-lingual applications, skip to the next
section.

You can use multi-lingual text for buttons, tooltips, labels, etc.

 You must use a Unicode capable text editor when editing multi-lingual text.
Almost all PC based text editors recognize and can handle Unicode files.
Typically, you can check this by looking at the “Save as” dialog options. For
example, Notepad shows this in the Encoding option.

When you added the Save Changes button, you used the script, CTEXT("Save
Changes"); to set the button's caption. This indicates that the button's caption is
found by executing the CTEXT("Save Changes") scripting function.

The CTEXT() function looks up the customer multi-lingual text for the key "Save
Changes" and returns the associated language text.

Customer multi-lingual text is stored in the Texts_Cust_LL.txt file. The LL
represents a language code, e.g. English is en, French is fr, German is de, and
Japanese is ja. The name of the multi-lingual text file for Japanese is
Texts_Cust_ja.txt.

At execution time CTEXT("key") looks up the key supplied and returns a value
from data loaded from the current language file. If no entry is found, the "key" is
returned as the string.

 See the deployment tutorial for more details about using multi-lingual text.

The technique of using CTEXT("key") for multilingual text can and should be
used for literal text values everywhere in eXtensions intended for use in multi-
lingual applications.

The choice of the CTEXT "key" here makes the button captions correct even
when there are no key values in the Texts_Cust_LL.txt files. This is because the
key and the English translations are the same values.

This approach is fine with short to medium text strings, but using CTEXT("Enter
your password or click cancel to cancel and then log on again") would be not be
advisable.

You should probably look to developing a "key" naming standard like
CTEXT("Message_0001") or CTEXT("LongString.001") instead. This means that

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 83 of 407 407

you have to provide English (or native) language translations of what
Message_0001 (say) translates to.

If you change a Texts_Cust_LL.txt file you should clear your browser cache to
pick up the new file version.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 84 of 407 407

Group boxes

This task will rearrange data on the 5250 screen into groups.

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed,
select Group Box from the Extension Toolbox then drag and drop it onto the
screen panel.

Look at the Group Box property sheet:

Change the value of the caption property to
Identification.

Change the value of the look property from Classic to
Modern.

Save your changes.

Tip: we can tell the group box to always use the Modern look by modifying the
group box eXtension template. This way we don’t need to adjust the look
property for each group box we add.

 Please refer to FAQ – Customizing eXtensions for more information on how to
customize an eXtension template.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 85 of 407 407

Move the group box under the title bar, leaving a small gap, and approximately
size it according to the about half the width of the screen plan.

Save your changes.

Now, move the employee identification information according to the plan. The
employee identification information is title, last name, first name and gender.
After you finish your screen should look something like this:

Save your changes.

Add another group box and set its caption as Important Dates, and the look
property to Modern, and move it to the right-hand side of the Identification
group box.

Change the Employee Date of Birth label to Birth.

Change the Employee Start Date label to Start.

Change the Termination Date label to Termination.

Then arrange the date information according to the overall screen plan,
something along these lines:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 86 of 407 407

Save your changes.

Add another group box labelled Location and Job Details, and the look
property to Modern, and position it on the left-hand side of the screen below
the Identification group box.

After you finish the group box
will look like this.

Move these fields into the group box:
Street
City
State
Zip (Postal Code)
Country
Phone (Employee Telephone)
Job Title
Salary (Employee Annual Salary)
Start Action

Do not obsess over the exact layout. You may notice that this layout is slightly
different to the original.

Save your changes.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 87 of 407 407

Images

This task will add an image to the 5250 screen. You may notice that the image is
not part of the original 5250 screen.

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed,
select Group Box from the Extension Toolbox then drag and drop it onto
the screen panel.

Change the group box caption to Photo, and the look property to Modern, and
move it to the right-hand side of the Location and Job Details group box.

Add another extension by selecting Image from the Extension Toolbox then
drag and drop it onto the screen panel.

Select the image eXtension.

Change the imagePath property to /ts/skins/images.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 88 of 407 407

Change the imageName property to examplephoto.gif.

Save your changes.

The image will appear in the Photo group box.

The image may appear to be very large.
This is because the image appears as its
full size.
To shrink the image to the desired size,
we need to change the height and width
properties so that the browser will render
the image to fit inside its container.

Click the Edit Style button in the style property of the image extension.

Input the following into the Edit Styles window, then click OK.

height: 100%

width: 100%

This will ensure the image fits inside the Photo group box and not extend beyond
the group box borders.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 89 of 407 407

The completed screen will look similar to this:

The ability to script the image properties is useful. Often the image name needs
to be dynamically determined by using information present on the screen, such
as a product number or an employee number. You may even have to execute an
SQL request to look up a database table to find the name of the image.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 90 of 407 407

Hyperlinks

This task will add hyperlinks to the 5250 screen.

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed,
select Group Box from the Extension Toolbox then drag and drop it onto
the screen panel.

Change the group box caption to Online Documents, and move it to the right-
hand side of the Photo group box.

Add another extension by selecting HyperLink from the Extension Toolbox
then drag and drop it onto the screen panel, then change the caption to
Employment Contract, and move it into the Online Documents group box.

There is a small problem here. Since we don’t want the text to wrap around on
two lines the font size needs to be reduced. You can do this in two ways:

Option 1: Change the style font-size of the hyperlink to 7pt or 8pt

Option 2: Define a new application-wide style named SmallHyperLink (say)
that defines and standardizes the visual characteristics of a small
hyperlink.

If you choose option 1, you will have to change the font-size for every small
hyperlink.

If you choose option 2, you need to edit your application properties and define a
new style with properties, something like this:

name SmallHyperLink

styleFor HTML Element

htmlTag a

style font-size: 7pt;

Refer to the earlier section in this tutorial describing how to create styles.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 91 of 407 407

Edit the style property of the Employment Contract hyperlink.

Input the following into
the Edit Styles window,
then click OK:

cursor: Hand

Next, you need to specify what happens when a user clicks the hyperlink.

Edit the script for the onClick property of the Employment Contract hyperlink,
and copy the this code into the Edit Script window, then click OK.

{

window.open('/ts/skins/images/examplecontract.pdf','_blank');

}

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 92 of 407 407

When clicked, the Employment Contract hyperlink will open a PDF document.

Add another HyperLink extension.

Move the hyperlink into the Online Documents group box and change its caption
to Latest Time Sheet.

Edit the style property of the Latest Time Sheet hyperlink and input the
following into the Edit Styles window, then click OK.

cursor: hand;

Edit the script for the onClick property of the Latest Time Sheet hyperlink, and
copy the this code into the Edit Script window, then click OK.

{

window.open('/ts/skins/images/exampletimesheet.xls','_blank');

}

Save your changes.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 93 of 407 407

When clicked, the Latest Time Sheet hyperlink will open an Excel workbook.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 94 of 407 407

Finish the screen customization

This task will add one more group box to the 5250.

With the aXes Developer window and the XHRRPGTRN_Maint screen displayed,
select Group Box from the Extension Toolbox then drag and drop it onto
the screen panel.

Change the value of the caption property to Actions.

Change the value of the look property to Modern.

The finished screen will look something like this:

This screen is not exactly the same as the original plan as some minor
improvements have been made along the way.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 3 - Advanced Screen Enhancement ,
Page 95 of 407 407

Testing customizations
 Always test your customizations as a user.

You can test your screen customizations while logged on to aXes as a developer,
but you must always also test your application while logged on as a user.

To test as a user, open the Projects Home Page.

Select your project, and then use the Work as a User (aXes-TS2) option to
start aXes.

Add library AXESDEMO to your library list and call program XHRRPGTRN using
the buttons you created in the previous tutorial.

Select one of the displayed employees with an X and press enter.

Verify that the customizations display correctly, try out the buttons and
hyperlinks.

eXtensions Tutorial 4 - Autogui+

Introduction
This tutorial provides examples on how to use Autogui+.

The Pre-defined Autogui+ Rules
When a new aXes project is created, a set of pre-defined rules are applied in the application by default, defined
in the Autogui+ window.
To access the Autogui+ in TS-2 Developer Mode, click Auto-GUI tab then click Set Rules button under Autogui+
menu.

The following image shows the Autogui+ predefined rules:

The above rules can be modified according to your preference.
Another predefined rule that is not added by default is the “Terminal Style” rule. With the latest changes in
Autogui+, the styles and themes used have dramatically changed. For those users, that want the old style
back, they can add this rule to apply the old terminal style.

For example, the Copy File (CPYF) Command screen is displayed as follows:

If you want to see use the old terminal style, just add the “Terminal Style” predefined rule. To do this, do the
following:

1. Open the Autogui+ rules dialog by clicking the “Set Rules” button.

Documentation Library

eXtensions Tutorial 4 – Autogui+ - Page 97 of 407

2. Click the ”Add pre-defined rule” button.

3. Choose “Terminal Style’ from the list and click the Add button.

4. Click the OK button on the Autogui+ rules dialog and Save your changes.
5. The Copy File (CPYF) Command screen will be displayed using the old terminal style.

The currently available eXtensions that can be applied to elements are as follows:

Menu Items
The following example shows how to change the image and font style of menu items.

eXtensions Tutorial 4 – Autogui+ - Page 98 of 407

To do:

6. Download any icon of your choice, name it as menuarrow.png and save it to
/ts/screens/<private folder>.
The above icon used is downloaded from http://www.iconsdb.com/icon-sets/web-2-blue-
icons/arrow-55-icon.html#custom_size with 12px as its size.

7. In Autogui+ window, locate the rule named “Menu Items”.
8. Click Edit button in the Properties column to display the eXtension’s properties window.

9. In the Properties menu, click Edit Styles button of style property and set the following

attribute:
 font-style: italic

10. Close the Edit Styles dialog.
11. In the eXtensions menu, set the following property:

 imageURL: /ts/screens/<private folder> /menuarrow.png

12. Click OK button to store the changes and close the Properties window.
13. Click Ok button to store the changes and close the Autogui+ window.
14. Click Save button.
15. Log in to your project to confirm the changes has been applied to your project.

Note:
 Make sure to change the permission of the downloaded files to:

*PUBLIC *R

Figure-1A. Default Menu Item Figure-1B. Updated Menu Item

http://www.iconsdb.com/icon-sets/web-2-blue-icons/arrow-55-icon.html#custom_size
http://www.iconsdb.com/icon-sets/web-2-blue-icons/arrow-55-icon.html#custom_size

eXtensions Tutorial 4 – Autogui+ - Page 99 of 407

Function Keys
The following example shows how to add an icon to a function key button. The Function Key is an Output field
and is identified by the following regular expression in the Identification Rules:

To do:

1. Download any icon of your choice, name it as cancel.png and delete.png, respectively and
save it to /ts/screens/<private folder>.
The above icons used are downloaded from http://www.iconsdb.com/custom-color/arrow-81-
icon.html, http://www.iconsdb.com/custom-color/delete-icon.html#custom_size with 12px
as its size.

2. In Autogui+ window, click button to add a new rule for Cancel function key.

3. Set the following rule:
 Name: FKey Cancel

 Apply As: Push Button

Figure-2A. Default Function Key Buttons

Figure-2B. Updated Function Key Buttons

(F|PF|FP|CF)\d{1,2} *=

http://www.iconsdb.com/custom-color/arrow-81-
http://www.iconsdb.com/custom-color/arrow-81-
http://www.iconsdb.com/custom-color/delete-icon.html#custom_size

eXtensions Tutorial 4 – Autogui+ - Page 100 of 407

4. Click Edit button of Identification Rules column to display Edit Rule dialog.

5. In Edit Rule dialog, click button to add a new rule.
6. Set the following rule:

 Position: Target
 Contains: F12 *=
 Field Type: Output
 Start col: 1
 End col: 80

7. Click OK button to store the changes and close the dialog.

8. Click Edit button in the Properties column to display the eXtension’s properties window.

9. In the eXtensions menu, click Edit Styles button of style property to open the Edit Styles
dialog.

10. Set the following attributes:
 background-image: url("/ts/screens/<private folder>/cancel.png")
 background-position: 2px center
 background-repeat: no-repeat
 background-size: contain
 text-align: right
 width: 50px

11. Click OK to close the dialog.

12. Click OK button to store the changes and close the Properties window.

13. Click Edit button of Options column and check “Recognise function keys”.

Note: Check “Text includes multiple function keys” to apply this rule to function key that
belongs to a group of text, too. Example, the function keys in XHRRPGTRN screen.

14. Click OK button to store the changes and close the Options window.

15. In Autogui+ window, click icon in the “FKey Cancel“ row to duplicate its contents.

16. In the newly copied rule, rename it to “FKey Delete”.

17. Click Edit button of Identification Rules column to display Edit Rule dialog.

18. In Edit Rule dialog, change the value of Contains to “F22 *=”

19. Click OK button to store the changes and close the dialog.

20. Click Edit button in the Properties column to display the eXtension’s properties window.

21. In the eXtensions menu, click Edit Styles button of style property to open the Edit Styles
dialog.

22. Edit the following attribute:
 background-image: url("/ts/screens/<private folder>/delete.png")

eXtensions Tutorial 4 – Autogui+ - Page 101 of 407

23. Click OK to close the dialog.

24. Click OK button to store the changes and close the Properties window.
25. Click OK button to store the changes and close the Autogui+ window.

26. Click Save button.

27. Log in to your project and go to screens with function key F12 and F22.

Note:
 Make sure to change the permission of the downloaded files to:

*PUBLIC *R

eXtensions Tutorial 4 – Autogui+ - Page 102 of 407

Hyperlinks
The following example shows how to update the style of a hyperlink. Hyperlink is applied to an output field that
has a value containing “http://”, “https://”, “mailto:”, “www”, etc. Refer to its Identification Rule’s “contains”
field for the complete list of possible values.
To identify a hyperlink, in XHRRPGTRN screen, put “x” to any record of your choice and press Enter key to go
to its Edit screen. Change the value of “Surname” data to “http://lansa.com” then press Enter key to save.
Normal display:

When mouse is hovered on it:

Normal display:

When mouse is hovered on it:

To do:

1. In Autogui+ window, locate the rule named “Hyperlinks”.

2. Click Edit button in the Properties column to display the eXtension’s properties window.

3. In the eXtensions menu, click Edit Styles button of style property and set the following

attributes:
 border-bottom: 1px solid #d8d8d8
 color: #548dd4

text-decoration: none
4. Click OK to close the Edit Styles dialog.
5. Click Edit Styles button of mouseOverStyle and set the following attributes:

 border-bottom: 1px solid #548dd4
 font-weight: bold

text-decoration: none
 text-shadow: 0 0 2px #548dd4

6. Click OK to close the Edit Styles dialog.
7. Set “red” to mouseOverColor property.
8. Click OK button to store the changes and close the Properties window.
9. Click OK button to store the changes and close the Autogui+ window.
10. Click Save button.
11. Log in to your project and go to screens with data as hyperlink.

Figure-3A. Default Hyperlink

Figure-3B. Updated Hyperlink

eXtensions Tutorial 4 – Autogui+ - Page 103 of 407

Page Keys
The following example shows how to change the image and style of Subfile Scroller used in page keys. The
Page Key is an Output field and is identified by the following regular expression in the Identification Rules:

To do:

1. Download any icon of your choice, name it as pageup.png and pagedown.png and save it to
/ts/screens/<private folder>.
The above icons used are downloaded from http://www.iconsdb.com/icon-sets/web-2-blue-
icons/arrow-203-icon.html#custom_size, http://www.iconsdb.com/icon-sets/web-2-blue-
icons/arrow-141-icon.html with 9px as its size.

2. In Autogui+ window, locate the rule named “Page Keys”.

3. Click Edit button in the Identification Rules column to display Edit Rules dialog.

(^\s*(\+|More...|続く...|Más...|A suivre...|Weitere ...|尚有...|尚有...|계속 ...|Segue...)\s*$)|(^\s*(Bottom|終

わり|Final|Fin|Ende|底端|底部|맨 아래|Fine)\s*$)

Figure-4A. Default Page Keys

Figure-4B. Updated Page Keys

http://www.iconsdb.com/icon-sets/web-2-blue-icons/arrow-203-icon.html#custom_size
http://www.iconsdb.com/icon-sets/web-2-blue-icons/arrow-203-icon.html#custom_size
http://www.iconsdb.com/icon-sets/web-2-blue-icons/arrow-141-icon.html
http://www.iconsdb.com/icon-sets/web-2-blue-icons/arrow-141-icon.html

eXtensions Tutorial 4 – Autogui+ - Page 104 of 407

4. Change the value of Start Row to “19” then click OK to store the change.

5. Click Edit button in the Properties column to display the eXtension’s properties window.

6. In the Properties menu, click Edit Styles button of style property and set the following
attribute:
 top: 330px
 width: 40px

7. Click OK to close the Edit Styles dialog.
8. In the eXtensions menu, set the following properties:

 pgDnImageName: pagedown.png
 pgDnImagePath: /ts/screens/<private folder> /
 pgUpImageName: pageup.png
 pgUpImagePath: /ts/screens/<private folder> /

9. Click OK button to store the changes and close the Properties window.
10. Click Ok button to store the changes and close the Autogui+ window.
11. Click Save button.
12. Log in to your project and go to screens with subfile to confirm the changes has been applied

to your project.

Note:
 Make sure to change the permission of the downloaded files to:

*PUBLIC *R

eXtensions Tutorial 4 – Autogui+ - Page 105 of 407

Prompt Buttons
When prompt is available on the screen, a “+” character is displayed next to an input field and the “Prompt”
function key is also available. To open the prompt box, position the cursor to the input field and click the
“Prompt” function key button like the screen below.

In Autogui+ pre-defined rule - “Prompt Buttons”, the “+” character is converted to a button so the user can
click on it to open the prompt box directly without using the “Prompt” function key button.

The following example shows how to replace the “+” character with an icon for prompt buttons.

Figure-5A. Default Prompt Buttons

eXtensions Tutorial 4 – Autogui+ - Page 106 of 407

To do:

1. Download any icon of your choice, name it as lookup.png and save it to /ts/screens/<private
folder>.
The above icon used is downloaded from http://www.iconsdb.com/green-icons/opera-glasses-
icon.html with 10px as its size.

2. In Autogui+ window, locate the rule named “Prompt Buttons”.

3. Click Edit button in the Properties column to display the eXtension’s properties window.

4. In the eXtensions menu, click Edit Styles button of style property and set the following

attribute:
 background-image: url("/ts/screens/<private folder>/lookup.png")
 background-position-x: 2px
 background-repeat: no-repeat
 font-size: 0px
 height: 14px
 width: 16px

5. Close the Edit Styles dialog.
6. Click OK button to store the changes and close the Properties window.
7. Click Ok button to store the changes and close the Autogui+ window.
8. Click Save button.
9. Log in to your project to confirm the changes has been applied to your project.

Note:
 Make sure to change the permission of the downloaded files to:

*PUBLIC *R

Figure-5B. Updated Prompt Buttons

eXtensions Tutorial 4 – Autogui+ - Page 107 of 407

Date
The following example shows how to apply the Date extension to the input box with Date format. The shipped
default format for Date is “dd/mm/yy” or “d/mm/yy”.

To do:

1. In Autogui+ window, locate the rule named “Date”.

2. Click Edit button in the Properties column to display the eXtension’s properties window.

3. In the eXtensions menu, set the following properties:

 hideCalendarImage: true

Figure-6A. Default Date

Figure-6B. Updated Date

eXtensions Tutorial 4 – Autogui+ - Page 108 of 407

 dateFormatDisplay: dd/mm/yy

4. Click OK button to store the changes and close the Properties window.

5. Click OK button to store the changes and close the Autogui+ window.

6. Click Save button.

7. Log in to your project and go to screens with Date input to confirm the changes has been
applied to your project.

eXtensions Tutorial 4 – Autogui+ - Page 109 of 407

Radio Button
The following example shows how to apply the Radio Button extension to the input box with “Gender” as its
label.

To do:

1. In Autogui+ window, click button to add a new rule.

Figure-7A. Default Employee Gender Input Box

Figure-7B. Updated Employee Gender Input Box

eXtensions Tutorial 4 – Autogui+ - Page 110 of 407

2. Set the following rule:
 Name: Gender
 Apply As: Radio Button

3. Click Edit button in the Identification Rules column to open the dialog.

4. Add two rules by clicking button twice.

5. Set the following rules:
 [Rule 1] [Rule 2]
 Position: Target Position: Left
 Field Type: Input Field Type: Output
 Contains: Gender

6. Click OK button to store the changes and close the dialog.

7. Click Edit button in the Properties column to display the eXtension’s properties window.

8. In the Properties menu, set the style->width attribute to 150px.

9. In the eXtensions menu, set the following properties:
 dataSourceType: Fixed Values
 orientation: Horizontal

10. Click Edit Items button of fixedValues property and set the following:
 [value] [text]
 Male Male
 Female Female

11. Click OK to close the dialog.

12. Click Edit Styles of radioButtonStyle property to open the Edit Styles dialog.

13. Set the following attributes:
 padding-bottom: 0px
 padding-top: 0px

14. Click OK button to close the dialog.

15. Click OK button to store the changes and close the Properties window.

16. Click OK button to store the changes and close the Autogui+ window.

17. Click Save button.

18. Log in to your project and go to screens with Gender label and confirm the changes has been
applied to your project.

Dropdown – Using Static Table
The following example shows how to apply the Dropdown extension to the input box with label that starts with
“Country”, and using static table as the dataSourceType.

eXtensions Tutorial 4 – Autogui+ - Page 111 of 407

Figure-8A. Default Country Input Box

Figure-8B. Updated Country Input Box

eXtensions Tutorial 4 – Autogui+ - Page 112 of 407

To do:

1. In Autogui+ window, click button to add a new rule.

2. Set the following rule:
 Name: Country
 Apply As: Dropdown

3. Click Edit button in the Identification Rules column to open the dialog.

4. Add two rules by clicking button twice.

5. Set the following rules:
 [Rule 1] [Rule 2]
 Position: Target Position: Left
 Field Type: Input Field Type: Output
 Contains: ^Country

6. Click OK button to store the changes and close the dialog.

7. Click Edit button in the Properties column to display the eXtension’s properties window.

8. In the eXtensions menu, set the following properties:
 dataSourceType: Static Table
 tablename: ISOCountry

9. Click OK button to store the changes and close the Properties window.

10. Click OK button to store the changes and close the Autogui+ window.

11. Click Save button.

12. Log in to your project and go to screens with Country label and confirm the changes has
been applied to your project.

eXtensions Tutorial 4 – Autogui+ - Page 113 of 407

Dropdown – Using Dynamic Table
The following example shows how to apply the Dropdown extension to the input box with label that starts with
“Business Unit Abbreviation”, and using Dynamic Table as the dataSourceType.
The Business Unit data is based on Department. Only from “ADM”, “FIN”, and “HR” departments will be loaded.

Figure-9A. Default Business Unit Input Box

Figure-9B. Updated Business Unit Input Box

eXtensions Tutorial 4 – Autogui+ - Page 114 of 407

To do:
1. In the project’s Edit Project Files, click Edit Dynamic Tables.
2. Add the following:

3. Click Save and re-open the project.

4. In Autogui+ window, click button to add a new rule.

5. Set the following rule:
 Name: Business Unit
 Apply As: Dropdown

6. Click Edit button in the Identification Rules column to open the dialog.

7. Add two rules by clicking button twice.

8. Set the following rules:
 [Rule 1] [Rule 2]
 Position: Target Position: Left
 Field Type: Input Field Type: Output
 Contains: ^Business Unit Abbreviation.+$

9. Click OK button to store the changes and close the dialog.

10. Click Edit button in the Properties column to display the eXtension’s properties window.

11. In the Properties menu, set the width attribute to 200px.

12. In the eXtensions menu, set the following properties:
 dataSourceType: Dynamic Table
 sqlQueryName: SomeDepartmentBusinessUnits

13. Click Edit Script of sqlVariables property and type the following:
 ENV.SQL.SQLVariableDepartment = "'ADM', 'FIN', 'HR'";

14. Click OK to close the dialog.

--
===
===================
-- List of business units that belong to some departments specified by
:SQLVariableDepartment
--
===
===================
 DefineObjectInstance {

 className = "DynamicTable",
 name = "SomeDepartmentBusinessUnits",
 source = "sql",
 selectSQLcommand = "XHRBUABRV,XHRBUSUNT from AXESDEMO.XHRBU where
XHRDEPCDE in (:SQLVariableDepartment)",
 resultColumnNames = { "value", "text" },

 };

eXtensions Tutorial 4 – Autogui+ - Page 115 of 407

15. Click Edit Script button of onFillDropDown property and type the following:
 ROW.value + ' - ' + ROW.text;

16. Click OK to close the dialog.

17. Click OK button to store the changes and close the Properties window.

18. Click OK button to store the changes and close the Autogui+ window.

19. Click Save button.

20. Log in to your project and go to screens with Business Unit label and input box next to it,
and confirm the changes have been applied to your project.

eXtensions Tutorial 4 – Autogui+ - Page 116 of 407

Label
The following example shows how to apply the Label extension and change its text to the labels of adding a
new employee screen.

Figure-10A. Default Label Names

Figure-10B. Updated Label Names

eXtensions Tutorial 4 – Autogui+ - Page 117 of 407

To do:

1. In Autogui+ window, click button to add a new rule.

2. Set the following rule:
 Name: xhrrpgtrn_label
 Apply As: Label

3. Click Edit button in the Identification Rules column to open the dialog.

4. Add two rules by clicking button twice.

5. Set the following rules:
 [Rule 1] [Rule 2]
 Position: Target Position: Right
 Field Type: Output Diff: 1
 Start row: 3 Field Type: Input
 End row: 21
 Start col: 2
 End col: 30

6. Click OK button to store the changes and close the dialog.

7. Click Edit button in the Properties column to display the eXtension’s properties window.

8. In the eXtensions menu, click Edit Styles button of style property.

9. Set font-style attribute to “italic” then click OK to close the dialog.

10. Click Edit Script button of onScreenReady property and type the following:

Note: The script in onScreenReady property will be executed after the screen has finished
rendering all its contents. In this case, the changes in the label text will be applied last.

eXtensions Tutorial 4 – Autogui+ - Page 118 of 407

11. Click OK button to close the dialog.

12. Click OK button to store the changes and close the Properties window.

13. Click OK button to store the changes and close the Autogui+ window.

14. Click Save button.

15. Log in to your project and go to New Employee screen and confirm the changes has been
applied to your project.

// define the label’s text to replace and its sample text replacement
var data = {
 "Department Abbreviation" : "Department Initial",
 "Business Unit Abbreviation" : "Business Unit Initial",
 "Employee Identification" : "Employee ID",
 "Employee Title": "Title",
 "Employee Surname": "Last Name",
 "Employee Date of Birth" : "Date of Birth",
 "Employee Gender" : "Gender",
 "Postal Code" : "Zip Code",
 "Employee Telephone" : "Contact Number",
 "Job Title" : "Position",
 "Employee Annual Salary" : "Annual Income",
 "Employee Start Date" : "Start Date",
 "Termination Date" : "End Date"
};
// get the field’s data text
var text = FIELD.getValue();
// remove the dots and spaces in the text
text = text.replace(/\./g, "").trim();
// assign the formatted text to a new variable
var newtext = text;
// loop through the label data
for (var prop in data) {
 if (text == prop) {
 // if the text is found from the sample data, get its equivalent label
 newtext = data[prop];
 break;
 }
}
 // set the new label and add a colon
FIELD.setProperty("text", newtext + ":");
// refresh the field to reflect the change
FIELD.refresh();

eXtensions Tutorial 4 – Autogui+ - Page 119 of 407

Multitype Input Box
The following example shows how to apply the Multitype Input Box extension to Postal Code input field. This
input field will only accept 5-digit numeric characters only and will display a custom message when input is
invalid.

To do:

1. In Autogui+ window, click button to add a new rule.

2. Set the following rule:
 Name: Postal Code
 Apply As: Multitype Input Box

Figure-11A. Default Postal Code Input Box

Figure-11B. Updated Postal Code Input Box with validation

eXtensions Tutorial 4 – Autogui+ - Page 120 of 407

3. Click Edit button in the Identification Rules column to open the dialog.

4. Add two rules by clicking button twice.

5. Set the following rules:
 [Rule 1] [Rule 2]
 Position: Target Position: Left
 Field Type: Input Diff: 1
 Contains: Postal Code
 Field Type: Output

6. Click OK button to store the changes and close the dialog.

7. Click Edit button in the Properties column to display the eXtension’s properties window.

8. In the eXtensions menu, set the following properties:
 pattern: ^\d{5}$

 validationMessage: Must contain 5-digit numeric characters.

9. Click OK button to store the changes and close the Properties dialog.

10. Click OK button to store the changes and close the Autogui+ window.

11. Click Save button.

12. Log in to your project and go to New Employee screen and confirm the changes has been
applied to your project.

eXtensions Tutorial 4 – Autogui+ - Page 121 of 407

Checkbox
A checkbox extension allows the user to choose one between two possible options. Options can be yes/no,
on/off, or any two-state option.
Below is a sample screen where checkbox extension can be best applied.

For this tutorial, we will use the XHRRPGTRN screen where the input fields of the subfile accepts any character.
And when Enter key is pressed, all the records that has a value in its input field will display its edit screen.

If checkbox is applied, all rows where the field is checked/pressed will display its edit screen when Enter key is
pressed. This checkbox will use the unicode character for white circle to represent “unchecked” or no input
value, and Unicode character for black circle to represent “checked” or has an input value.

Figure-12A. Default Y/N Input Box

Figure-12B. Y/N Input Box changed to checkbox

Figure-12C. Default Subfile Input Box

eXtensions Tutorial 4 – Autogui+ - Page 122 of 407

To do:

1. In Autogui+ window, click button to add a new rule.

2. Set the following rule:
 Name: SubfileOptionCheckbox
 Apply As: Checkbox

3. Click Edit button in the Identification Rules column to open the dialog.

4. Click button to add a new rule.

5. Set the following rule:
 Position: Target
 Field Type: Input
 Length: 1
 Start row: 6
 End row: 19
 Start col: 3
 End col: 3

6. Click OK button to store the changes and close the dialog.

7. Click Edit button in the Properties column to display the eXtension’s properties window.

8. In the eXtensions menu, click button of the label property to input script.

9. Click Edit Script button of label property to open the Edit Script dialog and type the
following:

Figure-12D. Updated Subfile Input Box

eXtensions Tutorial 4 – Autogui+ - Page 123 of 407

10. Click OK button to store the changes and close the dialog.

11. Click Edit Styles button to open the Edit Styles dialog.

12. Set the following attributes and click OK to store the changes and close the dialog.
 padding-bottom: 0px
 padding-left: 2px
 padding-right: 2px
 padding-top: 0px

13. Click OK button to store the changes and close the dialog.

14. Click Edit Script button of onChecked property to open the Edit Script dialog and type the

following:

15. Click OK button to store the changes and close the dialog.

16. Click Edit Script button of onUnchecked property to open the Edit Script dialog and type the
following:

17. Click OK button to store the changes and close the dialog.

18. Click Edit Script button of onSetValue property to open the Edit Script dialog and type the
following:

19. Click OK button to store the changes and close the dialog

20. Click OK button to store the changes and close the Properties dialog.

21. Set “Yes” to Include Subfile column.

22. Click OK button to store the changes and close the Autogui+ window.

23. Click Save button.

24. Log in to your project and go to the XHRRPGTRN screen. Click any of the checkboxes and
press Enter key. Confirm that the checked rows will display its edit screen.

var label ="\u25CB"; // Unicode for white
circle
if (FIELD.getValue() == 'X')
 label = "\u25CF"; // Unicode for black
circle
ENV.returnValue = label;

FIELD.setValue("X");
FIELD.refresh();

FIELD.setValue("");
FIELD.refresh();

(FIELD.getValue() == "X")

eXtensions Tutorial 4 – Autogui+ - Page 124 of 407

Raw HTML
This extension allows the user to add an html element such as div or img that will be displayed in all the
screens of the application. Since this is not applied to any existing elements, the Contains field in Identification
Rules dialog must have a fixed value of “_AX_ONCE_”
The following example shows how to add a logo image and a gif image that acts as a banner for important
information.

To do:

1. For the logo, download any image of your choice and name it as logo.png. For the banner,
download any gif image or create one using free gif maker websites that animates the text
and name it as banner.gif. Then put these images in ts/screens/<private folder>.

2. For the logo, in Autogui+ window, click button to add a new rule.

3. Set the following rule:
 Name: Logo
 Apply As: Raw HTML

4. Click Edit button in the Identification Rules column to open the dialog.

5. Click button to add a new rule.

6. Set the following rule:
 Position: Target
 Contains: _AX_ONCE_

7. Click OK button to store the changes and close the dialog.

8. Click Edit button in the Properties column to display the eXtension’s properties window.

9. In the Properties menu, click Edit Styles button to open the Edit Styles dialog.

10. Set the following attributes:
 left: 750px

Figure-13. Logo and banner displayed on the screen

eXtensions Tutorial 4 – Autogui+ - Page 125 of 407

 top: 2px

11. Click OK to store the changes and close the dialog.

12. In the eXtensions menu, set “<img style="height:20px" src="/ts/screens/<private folder>/
logo.png">” to html property.

13. Click OK button to store the changes and close the Properties dialog.

14. For the banner, in Autogui+ window, click button to add another rule.

15. Set the following rule:
 Name: Banner
 Apply As: Raw HTML

16. Click Edit button in the Identification Rules column to open the dialog.

17. Click button to add a new rule.

18. Set the following rule:
 Position: Target
 Contains: _AX_ONCE_

19. Click OK button to store the changes and close the dialog.

20. Click Edit button in the Properties column to display the eXtension’s properties window.

21. In the Properties menu, click Edit Styles button to open the Edit Styles dialog.

22. Set the following attributes:
 height: 20px
 left: 450px
 top: 430px

23. Click OK to store the changes and close the dialog.

24. In the eXtensions menu, set “<img src="/ts/screens/<private folder>/banner.gif">” to
html property.

25. Click OK button to store the changes and close the Properties dialog.

26. Click OK button to store the changes and close the Autogui+ window.

27. Click Save button.

28. Log in to your project and check each screen if the logo and banner are displayed.

Note:
 Make sure to change the permission of the downloaded files to:

*PUBLIC *R

eXtensions Tutorial 4 – Autogui+ - Page 126 of 407

Other Example: Hiding the screen name
This example shows how the screen name will be replaced with an icon, and when clicked, the screen name will
be displayed in an alert box.

To do:

1. Download any icon of your choice, name it as info.png and save it to /ts/screens/<private
folder>.
The above icon used is downloaded from http://www.iconsdb.com/custom-color/info-2-
icon.html with 16px x 16px as its size.

2. In Autogui+ window, click button to add a new rule.
3. Set the following rule:

 Name: ScreenName
 Apply As: Label

4. Click Edit button in the Identification Rules column to open the dialog.

5. Click button to add a new rule.

Figure-14-A. The screen name “MAIN” displayed on the top left of
the screen

Figure-14-B. The screen name is replaced with icon

http://www.iconsdb.com/custom-color/info-2-icon.html
http://www.iconsdb.com/custom-color/info-2-icon.html

eXtensions Tutorial 4 – Autogui+ - Page 127 of 407

6. Set the following rule:

 Position: Target
 Contains: ^.+[a-zA-Z0-9]
 Field Type: Output
 Start row: 1
 End row: 1
 Start col: 2

 End col: 19
7. Click OK to store the changes.

8. Click Edit button in the Properties column to display the eXtension’s properties window.
9. In the eXtensions menu, click Edit Styles button of style property and set the following

attribute:
 background-image: url("/ts/screens/<private folder>/info.png")
 background-repeat: no-repeat
 background-size: contain
 display: inline-block
 height: 16px
 text-indent: -100px
 width: 16px

10. Click OK to store the changes and close the dialog.
11. Click Edit Script button of onClick property and type the following:

 alert(FIELD.getValue());

12. Click OK to store the changes and close the dialog.
13. Check the sizeToText property.
14. Click OK button to store the changes and close the Properties window.
15. Click Ok button to store the changes and close the Autogui+ window.
16. Click Save button.
17. Log in to your project to confirm the changes has been applied to your project.

Note:
 Make sure to change the permission of the downloaded files to:

*PUBLIC *R

eXtensions Tutorial 4 – Autogui+ - Page 128 of 407

Other Example: Hiding the date/time information on the screen
Some of the screens contain date and time information like the Work with Active Jobs screen. This example
shows how to hide this date/time information in case it is not necessary to display it.
To go to the following screen, type “waj” in the command line of the MAIN screen.

To do:

1. In Autogui+ window, click button to add a new rule.
2. Set the following rule:

 Name: HideDateTime
 Apply As: Label

3. Click Edit button in the Identification Rules column to open the dialog.

4. Click button to add a new rule.

5. Set the following rule:
 Position: Target
 Contains: ^\d\d(:|/)\d\d(:|/)\d\d$
 Field Type: Output
 Start row: 1
 End row: 2
 Start col: 62

Figure-15-A. Date/time is displayed on the screen

Figure-15-B. Date/time is hidden

eXtensions Tutorial 4 – Autogui+ - Page 129 of 407

6. Click OK to store the changes and close the dialog.
7. Click Edit button in the Properties column to display the eXtension’s properties window.
8. In the Properties menu, uncheck the visible property.
9. Click OK button to store the changes and close the Properties window.
10. Click Ok button to store the changes and close the Autogui+ window.
11. Click Save button.
12. Log in to your project to confirm the changes has been applied to your project.

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 130 of 407

eXtensions Tutorial 5 - Tracing and Debugging Techniques

You must complete Tutorial 3 first
Tutorial 3 is assumed knowledge for this tutorial.
If you have not completed tutorial 3 please do so before attempting this tutorial.

Note
When testing your scripts, they may frequently crash. If this happens, you should not just start a new session
in the browser. You should close the browser window(s), and start the browser again. This allows the browser
to free up any resources left in use at the time of the failure.

Using alert()
When your scripts don't work as expected, the simplest form of debugging is to add an alert to them.

Suppose you wanted to check a value being used in your onClick logic for a button:

Open the Projects Home Page. Select your project and then use the Work as Developer option.

Sign on to aXes and then to a 5250 session.

Display the System i Main Menu.

Start the axes demo, and go to any employee's details.

Next you need to identify a field on the screen so that you can debug its value. To do this, name the Job Title
field Job_Title in the Screens tab like this:

Click on the job title field:

Display the Screens tab and note that the field is automatically selected. Give it the name Job_Title and click
the Save button:

Documentation Library

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 131 of 407

Now edit the screen by clicking the eXtensions tab and locking the screen for editing.

Add a new element.

Select Push Button eXtension from the Extension Toolbox then drag and drop it onto the screen panel.

Give the button the caption Debug with an alert

Now edit the onClick property. Replace the code with this:

var F = FIELDS("Job_Title");
var value = F.getValue();
alert("The value in the job title field is: " + value);

Close the script editor and then save

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 132 of 407

Now, if you click on the button, you can see the value being processed, in the alert window.

Debug Basics
Instead of using alert, you can use a DEBUG statement. This produces a similar result, but it puts the output
from all DEBUG statements into the same window.

Add a new push button to the employee maintenance screen, with the caption Output to Debug

Edit the onClick property and add this code

var myField = FIELDS("Job_Title");
var value = myField.getValue();
DEBUG("The value of the Job Title field is:", value, "some more text");
DEBUG("Another debug statement");

Save your changes

Note that the format for DEBUG is slightly different. The values to be concatenated are separated by commas,
and you can have as many values as you want.

When you click on the button, a debug window is opened, showing all debug statements.

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 133 of 407

Tracing Basics
Sometimes, an alert interrupts the flow of processing too much. Tracing allows you to watch what happens
with less impact.

Add a new push button to the employee maintenance screen, with the caption Output to Trace

Edit the onClick property and add this code

var F = FIELDS("Job_Title");
var value = F.getValue();
TRACE("The value in the job title field is: ", value, " more text ", " and more text");

Note the use of the TRACE command. You can specify as many parameters as you want. The TRACE will
concatenate them and send them to the trace window.

To see the trace output, save your changes and exit aXes.

Now open the Projects Home Page. Select your project and then use the Work as Developer (Tracing) option.

Navigate back to the employee maintenance screen and press the Output to Trace button. The trace
information appears in the trace window

TRACE statements can be left in your code. They will only have an impact if aXes is running in trace mode.

Debugging Tools and Options
It is also possible to use the Microsoft Internet Explorer 8 Developer Tools to debug your scripts.

Internet Explorer 8 (IE8) comes with a built-in script debugger (part of IE8 developers tools). IE8 can be
downloaded from http://www.microsoft.com/windows/internet-explorer/worldwide-sites.aspx

Several things that you need to check or configure before you start debugging your scripts

• Select the “Internet Options” option from the “Tools” menu.

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 134 of 407

• Go to the “Advanced” tab (last tab), then scroll down until you see the “Browsing” section. Make
sure that “Disable script debugging (Internet Explorer)” and “Disable script debugging (Other)”
checkboxes are unchecked.

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 135 of 407

How to force IE8 to enter debug mode so you can step through your script line by line?

Suppose that you have the following fragment of code in your button event handler, which has a deliberate
error in it (F.setvalue instead of F.setValue):

Modify the onClick code for the QPRINT Queue button, on the main screen , to contain this code:

var F = FIELDS("CommandLine");
F.setvalue("WRKOUTQ QPRINT");
SENDKEY("Enter");

You get an error when it runs:

Please note that the above popup window for script error no longer displays in IE 11.
To see the error message, you must do the succeeding procedure to step through the
code.

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 136 of 407

You will want to step through the script, line by line while at the same time watching the changes in the
variable values. The easiest way to tell IE8 that you want to debug this piece of code is by putting statement
“debugger” at the beginning of this code fragment.

debugger;
var F = FIELDS("CommandLine");
F.setvalue("WRKOUTQ QPRINT");
SENDKEY("Enter");

In the IE window, select Developer Tools from the Tools menu, or use F12 to start the built in IE
debugger. In the Developer Tools window click on the Script tab:

When you click on the button that runs the onClick script containing the error, the debug window will come
up:

Have a closer look at toolbar buttons. Hover your mouse over those buttons to see the descriptions:
 Continue: exit debug mode and continue normal execution of the script.
 Break All & Break On Error: don’t worry about these 2.
 Step Into: if the current statement is calling a function, it will step through the statements inside the

function line by line. You don't want to use this option because you will be stepped through all the
internal aXes code and the jQuery code, which is generally not helpful.

 Step Over: it will not step through the statements inside the function. Use this option to step
through the statements in the code you can currently see.

 Step Out: execute the current function in one ago, then break into debug mode again.

Now click on “Step Over” button. (This steps over the internal code statements, to the next statement in
the visible block of code)

You can see that it’s moving to the next statement. Note that the highlighted statement is the next
statement to be executed – so it hasn’t been executed yet.

Now click on the “Watch” tab – we are going to watch the content of variable F.

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 137 of 407

Click on the text “Click to add…” and type in F and press Enter. It will say undefined as the statement hasn’t
been executed yet.
Click again the “Step Over” button.

Now by expanding F, in the Watch tab, you can see all its properties.

But we have not encountered the error yet.

Try step over, one more time. This time we can see that the previous line was the source
of the error. A few more step overs will take us to the actual alert.

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 138 of 407

So at this point, we would know to focus our attention on the line

F.setvalue("WRKOUTQ QPRINT");

Correct the line back to:

F.setValue("WRKOUTQ QPRINT");

and save your change.
For IE 11, the appearance of the Debugger window has changed but the behaviour of the functions are still the
same.

Using Fiddler
Fiddler is a free tool that allows you to watch the traffic sent between the server and the client, as your axes
application runs.

You can find out about it and download it from here:
http://www.fiddler2.com/fiddler/help/

Install fiddler, and start it. Then start an axes session.

It produces a screen like this:

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 139 of 407

where each line in the left panel corresponds to a request and response from the web server

On the panel on the right, in the inspectors tab, is the information about the request sent (top panel) and the
response received (bottom panel), for the selected line:

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 140 of 407

There are many views and features in this product, but one particularly useful one is the ability to save either
one or all sessions to file, which can be sent when trying to resolve problems.

To save one session, select it and save as follows:

eXtensions Tutorial 5 – Tracing and Debugging Techniques - Page 141 of 407

To save all sessions:

eXtensions Tutorial 6 - The USERENV object

What is the USRENV object?

The aXes ENV (Environment) object contains common properties and functions that you
use in your eXtension scripting.

The USERENV (User Environment) object is a JavaScript object. It extends the concept
of the ENV object by acting as a container for properties and functions that are uniquely
part of your project.

What is USRENV used for?
USERENV's main uses are:

• Allows definition and change of common values in just one place.
• Define common logic to encourage reuse and minimize coding.
• As a session persistent container of eXtension state values.
• As a way of exchanging information between eXtension scripts.
• As a way of signalling custom events between eXtension scripts.

How and where is it defined?
The USERENV object is defined in the userenv.js file.
The userenv.js file resides in your definition set / project folder.

Open the Projects Home Page. Select your project and then use the Edit USERENV
Object option. The resulting NOTEPAD display should look something like this:

The warning is very important.

Documentation Library

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 6 - The USERENV object , Page 143
of 407 407

When customizing this file, make sure you keep versions to avoid loss of your work when
upgrading aXes or if you need to re-install.

Looking at the userenv.js file content you will see this non-comment JavaScript:

var USERENV =
{

 /* -- */
 /* Properties defined as part of the USERENV object */
 /* -- */

 staticTablesFile : "tables_static.txt", /* Default name for file …
 dynamicTablesFile : "tables_dynamic.txt", /* Default name for file …

This code declares a JavaScript object called USERENV.
It contains properties named staticTablesFile and dynamicTablesFile.

This means that you can refer to USERENV.staticTablesFile and
USERENV.dynamicTablesFile anywhere in JavaScript code that you add to an eXtension.

Adding a property to the USERENV object
Try adding two properties of your own to USERENV.

Open the Projects Home Page. Select your project and then use the Edit USERENV
Object option to open file userenv.js in your project folder in NOTEPAD.

Add the two highlighted property declarations to

var USERENV =
{
 /* -- */
 /* Properties defined as part of the USERENV object */
 /* -- */

 companyName : "My Test Company",
 messageLine : 22,

 staticTablesFile : …… etc, etc

Now save the updated userenv.js file.

In one of the extensions you created in a preceding tutorial, add code that does this:

 alert(USERENV.companyName);
 alert(USERENV.messageLine.toString());
 USERENV.messageLine = USERENV.messageLine + 27;
 alert(USERENV.messageLine.toString());

By causing the code to execute in your eXtension you should be able to see that these
new properties that you have created can be read from and written to the USERENV
object.

Hint: If you change userenv.js, you need to stop and restart your aXes 5250 session to pick up the
new version. Userenv.js is read just once as the 5250 session is initialized.

Adding a function to the USERENV object
Now, add a new function to the USERENV object.

Open the Projects Home Page. Select your project and then use the Edit USERENV
Object option to open file userenv.js in your project folder.

In the body of the USERENV object declare function addNumbers like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 6 - The USERENV object , Page 144
of 407 407

 addNumbers : function(a,b,c)
 {
 var result = a + b + c;
 return(result);
 }, /* Note the comma */

Now save the updated userenv.js file. In one of the extensions you created in a
preceding tutorial, add scripting code that does this:

var x = USERENV.addNumbers(4,5,6);
alert("Result = " + x.toString());

By causing the code to execute in your eXtension you should be able to see that this new
function can be used anywhere by eXtension logic.

Extending and Organizing the USERENV namespace
The style of JavaScript coding used to define the USERENV object is primarily used to
reserve the USERENV namespace.

This means you can confidently create a new USERENV function called myNewFunction()
knowing that there will be no such function already in the aXes namespace, nor will
there ever be one in the future - because it will be called USERENV.myNewFunction().

You can extend this approach to subdivide the USERENV name space itself.

For example, if this code is added right at the end of the userenv.js file (after the closure
of the USERENV object definition):

USERENV.Print =
{
 testProperty1 : "Hello",
 testProperty2 : 300,

 test : function(a)
 {
 } /* Note no comma as this is the last member of USERENV.Print */
};

Now the object and namespace USERENV.Print has been created, presumably to contain
things related to printing.

You can now reference properties USERENV.Print.testProperty1 or
USERENV.Print.testProperty2 and function USERENV.Print.test() in any eXtension
scripting.

Hint: You can actually imbed the USERENV.Print object declaration inside the USERENV base
definition, but sometimes the syntax gets a bit cryptic and hard to follow.

Using a common USERENV and SHARED object (RAMP-TS)
If you are using the RAMP-TS product from LANSA, you may know that its scripting
support contains a SHARED object namespace. Its intended purpose is virtually identical
to the USERENV namespace.

In RAMP-TS applications you can share a single common object by executing this code:

var SHARED = { };

in the RAMP-TS UF_SY420_RTS.js file.
This declares the SHARED object as an empty object.

Then in your RAMP-TS logon script, execute the JavaScript code:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 6 - The USERENV object , Page 145
of 407 407

SHARED = USERENV;

making the RAMP-TS SHARED object and the eXtensions USERENV object one and the
same thing.

eXtensions Tutorial 7 – Tables and XML Documents - Page 146 of 407

eXtensions Tutorial 7 - Tables and XML Documents

Static Tables that load from static data

Static tables are JavaScript objects defined in the file called tables_static.txt.

To edit the tables, open the Projects Home Page. Select your project and then use the Edit Static Tables
option.

Each individual table is defined within a scripting block like this:

DefineObjectInstance {

};

The properties defined in each of the objects are:

className must be "StaticTable" for tables defined in this file

Documentation Library

eXtensions Tutorial 7 – Tables and XML Documents - Page 147 of 407

name A name that uniquely identifies a table within an aXes session.
This is the name to specify in the tableName property of
the eXtension.

source "inline" means the table content is defined as an array of rows
in the object.
"sql" means the table content is a result of executing a Select
SQL command.

validateSession For table operations that use SQL indicates that the execution of
the SQL operation may only be initiated by a signed on 5250
session. The default is false, the other allowable value is true. For
example:
DefineObjectInstance {
 className = "DynamicTable",
 validateSession = true,
 name = "TEST_SQL_1",

selectSQLcommand When the source is "sql" this is the command to execute
resultColumnNames When the source is "sql", the names given to the columns in the

table. These are the names to refer to in the eXtension –
e.g. ROW.<colname>

resultColumnCaptions When being output as CSV data, the captions to be used for each
column in the table.

rows When the source is "inline", the array of columns that defines
the table and its content. Here, the column names are implicitly
the left operands and will be the names to refer to in the
eXtension. For example if you look at the ISOCountry table and
want to refer to the value column you would say ROW.value

In this exercise you will modify the Maintain Employee screen for adding a new employee. The screen was
identified in Tutorial 1 as XHRRPGTRN_Maint.

You will add a drop-down next to the Employee Telephone field which will display US regions corresponding to
telephone area codes. The values in the drop-down are sourced from a static table you will create.

(Whether the screen on your system looks like the following screen shot depends on which other tutorials you
have completed.)

When the end-user selects a region, the area code is added to the Employee Telephone field.

eXtensions Tutorial 7 – Tables and XML Documents - Page 148 of 407

Step 1.

Go to the screen identified in Tutorial 1 as XHRRPGTRN_Maint
In XHRRPGTRN_Maint identify this field:

Employee Telephone as Employee_Telephone

Don’t forget to use the Save button, otherwise the Employee_Telephone identification will not be saved.

Step 2.

In the Projects Home Page choose the option Edit Static Tables:

Insert a new line and copy/paste this code and then save the file:

eXtensions Tutorial 7 – Tables and XML Documents - Page 149 of 407

-- ============================
-- Some US Telephone area codes
-- ============================

 DefineObjectInstance {

 className = "StaticTable",
 name = "USAreaCode",
 source = "inline",
 rows = {
 {areacode="202",location="Washington DC"},
 {areacode="208",location="All parts of Idaho"},
 {areacode="209",location="Fresno and Stockton"},
 {areacode="212",location="New York City (Manhattan only)"},
 {areacode="213",location="Los Angeles, California"},
 {areacode="217",location="Springfield, Champaign-Urbana"},
 {areacode="218",location="Duluth, (Northern) Minnesota"},
 {areacode="228",location="Southern Mississippi"},
 {areacode="307",location="All parts of Wyoming"},
 {areacode="615",location="Chattanooga and Nashville"},
 {areacode="630",location="Chicago Metro area"},
 {areacode="650",location="San Francisco area, CA"},
 {areacode="715",location="Eau Claire and Wausau"},
 {areacode="740",location="South Eastern Ohio"},
 {areacode="787",location="Puerto Rico"},
 {areacode="903",location="Texarkana and Paris"},
 {areacode="904",location="Jacksonville and Pensacola"},
 {areacode="909",location="Riverside and San Bernardino"},
 {areacode="918",location="Muskogee and Tulsa"}

 },

 };

Step 3.

Start an aXes development session and navigate to the XHRRPGTRN_Maint screen.

Step 4.

Start customising the screen.

Step 5.

Add a dropdown element from the Extension Toolbox and drag it next to the Employee Telephone input field.

Step 6.

Set these Drop Down properties:

dataSourceType: Static Table
tableName: USAreaCode
onFillDropDown: ROW.location;
onSelectValue: ROW.areacode;
onSelectedValueChanged: FIELDS("Employee_Telephone").setValue(ROW.areacode);

eXtensions Tutorial 7 – Tables and XML Documents - Page 150 of 407

Step 7.

Save the extension, then exit from the screen to the XHRRPGTRN_Select screen and click the Add button to
add a new employee.

In the XHRRPGTRN_Maintain screen use the Region drop-down to set the area code in the Employee Telephone
field.

Step 8.

Notice that when you display the details for a new employee, the Region drop-down always shows the first
entry in the USAreaCode table, Washington DC.

You can use the Additional Entries property to add an entry to appear at the top of the drop down that says
something like "Select a State to set area code". Edit the property and add this code:

var oROW = { areacode: "", location: "Select a State to set area code" };

this.addTableROW (oROW, true);

Restart aXes.

Now when employee details are displayed, the drop-down will show the additional entry:

eXtensions Tutorial 7 – Tables and XML Documents - Page 151 of 407

Static Tables that load from a database file

Static tables can load from a database file. The data is loaded the first time the table is used in an aXes
session, and remembered thereafter.

In this example we will add a dropdown that is populated from a table that already exists, called
XHRDepartment.

To view the table:

Step 1.

In the Projects Home Page choose the option Edit Static Tables.

The definition of the XHRDepartment table should look like this:

-- ==
-- Departments Table - Select from the shipped demonstration table AXESDEMO.XHRDEPT
-- ==

DefineObjectInstance {

 className = "StaticTable",
 name = "XHRDepartment",
 source = "sql",
 selectSQLcommand = "XHRDEPCDE,XHRDEPNME from AXESDEMO.XHRDEPT",
 resultColumnNames = {"value","text"},
 };

Note how the source for the table is sql. This means that the data for the table is read from the iSeries
database file, using the command in selectSQLcommand

that is: read fields XHRDEPCDE and XHRDEPNME from database file XHRDEPT in library AXESDEMO.

The data read is mapped into the table columns named in resultColumnNames.

So the data in field XHRDEPCDE is mapped into the table column named "value", and the data in field
XHRDEPNME is mapped into the table column called "text"

To associate this table with a drop down:

Step 1.

eXtensions Tutorial 7 – Tables and XML Documents - Page 152 of 407

Go to the screen identified in Tutorial 1 as XHRRPGTRN_Select
Press F6 to Add an Employee.

The Add screen should be recognised as the XHRRPGTRN_Maint
screen.

Step 2.

Click on the department field and change the visualization to drop down.

Change the properties of the drop down as follows

dataSourceType: Static Table
tableName : XHRDepartment
onFillDropDown : ROW.text;
onSelectValue : ROW.value;

Step 3.

Also add an "unselected" entry to the drop down, by adding the following script to the additionalEntries
property

var oROW = { value: "", text: "Select a Department" };
this.addTableROW (oROW, true);

Step 4.

Save your changes, (Edit and resize the field if necessary).

Restart aXes.

You now have a drop down that allows the user to select any of the departments in the XHRDEPT database file.

Static Tables and SQL Variables
Static tables can also be filled by executing SQL commands.

Every static table is filled the first time any static table is referenced by a script. They are normally filled only
once and they remain constant until the 5250 session ends.

The SQL commands used to fill static table can also contain SQLVariableXXXXX substitution names, just like
Dynamic Tables.

Imagine you have a set of static tables whose content relates to the company number that user selects as they
log on.
This means you need to pass SQLVariableCompanyNumber (say) to the routine that loads all the static tables.
You also need to do this before any drop down or other scripting tries to use the static table contents.

To do this you need to do something like this in your scripting before any drop down or scripting attempts to
use any static table:

// Create an object that defines all the SQLVariables required

 Var SQLVariables = { SQLVariableCompanyNumber : sCompany ,
 SQLVariableLibrary : USERENV.dftSQLDataLibrary };

// Ask the table manager to load the static tables and give it the SQLVariables
// that it needs to execute any SQL commands defined in the static table file

 TABLEMANAGER.loadStaticTables(USERENV.staticTablesFile, SQLVariables, false);

eXtensions Tutorial 7 – Tables and XML Documents - Page 153 of 407

This requests that all the static tables defined in the server file defined in the file named in
USERENV.staticTablesFile (eg: "tables_static.txt") should be loaded now.
Where the static tables are being loaded from SQL commands the variables SQLVariableCompanyNumber and
SQLVariableLibrary should be substituted.

The last parameter indicates that a (re)load of the static tables should be forced even if they have already been
loaded. Here it is passed as false, but using true might be appropriate if the user had just changed the
company they were using in the 5250 application.

Using Several Static Table Files
You don’t have to define all the Static Tables in one server file.

By default the server's static tables definition file is defined by USERENV.staticTablesFile which is shipped
containing "tables_static.txt".

When you manually load tables you could do this to aggregate 3 sets of static tables:

 TABLEMANAGER.loadStaticTables("Static_Set_1.txt", null, false);
 TABLEMANAGER.loadStaticTables("Static_Set_2.txt", null, true);
 TABLEMANAGER.loadStaticTables("Static_Set_3.txt", null, true);

Or even do this to selectively load the static tables from different data sources:

If (CompanyNumber == "01")
 TABLEMANAGER.loadStaticTables("Static_Company_001.txt", null, false);
else
 TABLEMANAGER.loadStaticTables("Static_Company_002.txt", null, false);

The key thing to remember is that you need to do this in your scripting before any drop down requests that the
static tables are loaded.

Dynamic Tables
Like static tables, dynamic tables can be used to do a lot more than just load data into combo boxes.

The only difference between a dynamic and a static table is that the data sourced from a static table persists
for the entire aXes session. Dynamic table data however is refreshed each time there is a screen interaction
where the screen contains an eXtension using the dynamic table.

In this tutorial step you are going to add an employee enquiry to the IBM i Main menu that retrieves employee
details based on the employee number:

eXtensions Tutorial 7 – Tables and XML Documents - Page 154 of 407

First, open the Projects Home Page. Select your project and then use the Edit Dynamic Tables option to open
tables_dynamic.txt. Add this dynamic table definition to it:

-- ==
-- Look up the details of an Employee
-- ==

 DefineObjectInstance {
 className = "DynamicTable",
 name = "FetchBasicEmployeeInfo",
 source = "sql",
 selectSQLcommand = "XHRSURNME,XHRGIVNME, XHRJOBTLE from AXESDEMO.XHREMPTN where
XHREMPID = ':SQLVariable_RequestedNumber' ",
 resultColumnNames = { "lastName", "firstName", "jobTitle" },
 };

This dynamic table is named FetchBasicEmployeeInfo.

It requires the caller to provide an employee number in a variable named SQLVariable_RequestedNumber.

It reads the name and title details from the employee master file shipped in the AXESDEMO library, returning
them with the values lastName, firstName and jobTitle respectively.

Now, alter the System i Main menu so that it can support employee enquiries, for example like this:

To do this add 3 new elements to the 5250 screen.

The first is a Default Visualization input field named requestEmployee:

eXtensions Tutorial 7 – Tables and XML Documents - Page 155 of 407

The second is an output result field named requestResult, with a 1px solid red border:

And the last is a push button with caption Locate Employee:

eXtensions Tutorial 7 – Tables and XML Documents - Page 156 of 407

The important part is this: add the following code to the onClick script:

/* The name of the dynamic table being used */

var sDynamicTable = "FetchBasicEmployeeInfo";

/* Get the employee number input and convert to upper case */

var sRequestedNumber = FIELDS("requestEmployee").getValue();
sRequestedNumber = sRequestedNumber.toUpperCase();

/* As the manager to load the dynamic table, passing the requested employee number */

TABLEMANAGER.loadDynamicTable(sDynamicTable,USERENV.dynamicTablesFile,{SQLVariable_RequestedN
umber : sRequestedNumber}, false);

/* Get row 0 from the result produced in the dynamic table */

var oRow = TABLEMANAGER.getTable(sDynamicTable).child(0);

/* If no resulting row was found then show error message in result field */

if (oRow == null)
FIELDS("requestResult").setValue("** NOT FOUND **");
else

 /* Format up the name and job title into the result field */

FIELDS("requestResult").setValue(oRow.firstName + " " + oRow.lastName + ", " +
oRow.jobTitle);

What this script does is to get the uppercased value of the employee number entered in field
requestEmployee. It then asks the table manager to create the dynamic table named FetchBasicEmployee,
passing in the employee number as an SQL variable. Then row 0 of the result is checked, and either an error
message or the employee details are output onto the screen in the requestResult field.

Save the extensions and enter employee numbers like A002450, A004680 or A008550 in the requestEmployee
field and click the button. You will see this:

eXtensions Tutorial 7 – Tables and XML Documents - Page 157 of 407

You have now added a new and quite foreign capability to the System i Main menu!

At one level this example is a bit silly, but at another level it demonstrates a very powerful facility.

Imagine the screen was not the System i Main Menu, but an Order Details screen, and the button said DHL
Delivery Status.

When the button is clicked an order/DHL cross reference table is accessed on the server to provide an
associated DHL consignment number. The DHL consignment number is then used to open a web browser
window (provided by DHL) to display the order's delivery status.

Frequently Asked Questions about this Example

Q: Does the library name have to be hard coded?
No. You just can use "… from XHREMPTN where …" if you want.

Q: What happens if the library name is not specified?
The axes server's current library list is used to locate the table.

Q: How can I avoid using a library name?
Leave it out of the SQL commands and put the required library(s) into the aXes server job's library list.

Q: I sign on to an aXes 5250 session as user FRED - is user FRED's library list used to find the file?
No. The library list used is the library list of the aXes server job.

Q: Can I dynamically change the aXes server's library list
This would not be advisable. Server requests execute in a multi-threaded, multi-user stateless environment.
Even if you changed the server jobs library list, another thread might change it 2 milliseconds later – even
before you could get to perform your SQL request.

Q: So is the library list solution suitable for all situations?
No. In situations where you need different library lists for different users (say) or different companies (say) to
support access to different databases you generally need to specify the exact library name for SQL requests.

Q: How can I make the library name soft?
By making it an SQLVariable like the employee number in this example.

The preceding example could be coded as:

 DefineObjectInstance {
 className = "DynamicTable",
 name = "FetchBasicEmployeeInfo",
 source = "sql",
 selectSQLcommand = "XHRSURNME,XHRGIVNME, XHRJOBTLE from
 :SQLVariableLibrary.XHREMPTN where
 XHREMPID = ':SQLVariable_RequestedNumber' ",
 resultColumnNames = { "lastName", "firstName", "jobTitle" },
 };
Now an SQLVarible named SQLVariableLibrary will be substituted into the SQL command before it is
executed.
This is no different to substituting the employee number or any other value.

Q: Where does SQLVariableLibrary come from?
It needs to be supplied by the eXtension script that causes the SQL command to be executed.

Q How is the value of SQLVariable set?
By normal eXtension scripting. If you look at the drop down eXtension's sqlVariables property you will see this
default value:

eXtensions Tutorial 7 – Tables and XML Documents - Page 158 of 407

So when a drop down is to be filled from an SQL command, by default, the SQL variable named
SQLVariableLibrary is passed to the server from the USERENV's dftSQLDataLibrary property. If you look at the
USERENV object definition you will see this line:

 /* -- */
 /* Properties defined as part of the USERENV object */
 /* -- */

 staticTablesFile : "tables_static.txt",
 dynamicTablesFile : "tables_dynamic.txt",
 dftSQLDataLibrary : "QGPL",

So by default, any SQL command used to fill a drop down has a variable named SQLVariableLibrary available to
it for substitution.
Also, by default, it will contain QGPL as the library name.

You could do this in any individual drop down's sqlVariables property:

 ENV.SQL.SQLVariableLibrary = "MYDATALIB";

or your could do this in the USERENV object:

 dftSQLDataLibrary : "MYOTHERLIB",

to change the SQLVariableLibrary value being sent to the server.

Q: Does the variable have to be named SQLVariableLibrary?
No. You can use any SQLVariablexxxxx name you like.

You might also have multiple names like SQLVariableGlobalLibrary and SQLVariableCompanyLibrary to
separate shared global databases from individual company databases.

Q: How can I work out different library names for different situations?
However you like.

Imagine your 5250 application made the user select a company as they logged on. In the screen onLeave
script you could code something like this:

var CompanyNumber = FIELDS("CompanyNumber").getValue()

switch (CompanyNumber)
{
 case "01": USERENV.dftSQLDataLibrary = "DLCOMP_01"; break;
 case "02": USERENV.dftSQLDataLibrary = "DLCOMP02"; break;
 case "03": USERENV.dftSQLDataLibrary = "DLCOMP_3R"; break;
 case "04": USERENV.dftSQLDataLibrary = "DLCOMP4AG"; break;
}

This sets USERENV.dftSQLDataLibrary to different library names based on the selected company number for
use by all subsequent SQL commands.

More sophisticated and more generic examples of this can themselves execute an SQL command to look up a
table by company number (say) or user id (say) to determine the names of the libraries to be used. This is
similar to logic commonly used in many IBM i application 5250 logon programs. See Some Usage Ideas.

A tip for setting up SQL commands in the dynamic tables file
Before you create a dynamic table definition, it’s a good idea to first try out your SQL command in an SQL
command line session to get rid of any mistakes.

In a 5250 session use the STRSQL command to start a SQL command line session. Try out your intended SQL
command, for example:

 SELECT XHREMPID, XHRGIVNME,XHRSTREET,XHRCITY FROM AXESDEMO/XHREMPTN
 WHERE UPPER(XHRGIVNME) LIKE '%IN%'

which is a list of all employees whose name (in uppercase) contains the letters "IN". Test it until you get it
right, then copy/paste the command into your aXes dynamic tables file and generalize it as required - for
example:

eXtensions Tutorial 7 – Tables and XML Documents - Page 159 of 407

 DefineObjectInstance
 {
 className = "DynamicTable",
 name = "AnExample",
 source = "sql",
 selectSQLcommand = "XHREMPID, XHRGIVNME,XHRSTREET,XHRCITY FROM
 :SQLVariable_DataLibrary.XHREMPTN
 WHERE UPPER(XHRGIVNME) LIKE '%:SQLVariable_PartialName%' ",
 };

Working this way might save you several cycles of dynamic table updating to get your SQL command right.

BTW: You have to define the SQL commands in a server based file because this makes it difficult for a browser
client to change what columns are selected. For security reasons only SELECT (read) SQL commands should
ever be allowed. Developers need to be careful not to get too inventive with SQL variables and accidentally
allow simple SQL injection attacks.

XML Documents

In this step you will use data from an XML document to populate a drop down with job titles.

Step 1.

Use a text editor like notepad to copy/paste this XML:

<?xml version="1.0" encoding="iso-8859-1"?>

<jobtitles>
 <title>Lawyer</title>
 <title>Auditor</title>
 <title>Maintenance Officer</title>
 <title>Quality Manager</title>
 <title>Funds Manager</title>
</jobtitles>

Note: you can add more <title> nodes if you wish.

Save this file as JobTitles_en.xml in the axes\ts\screens folder or your private definition set folder, for
example:
\axes\ts\screens\eeva (where eeva is the name of your private definition set folder).

eXtensions Tutorial 7 – Tables and XML Documents - Page 160 of 407

Step 2.

Go to the screen identified in Tutorial 1 as XHRRPGTRN_Maint
In XHRRPGTRN_Maint identify the field Job Title as Job_Title

Step 3.

Double-click the Job_Title field to open the Add eXtension window then select DropDown from the list and
click the Add button.

Step 4.

Set these Drop Down properties:

dataSourceType: XML file
tableName: JobTitles
onFillDropDown: ROW.title
xmlFileName: JobTitles_en.xml
onSelectValue: ROW.title
onSelectedValueChanged: FIELD.setValue(ROW.title)

eXtensions Tutorial 7 – Tables and XML Documents - Page 161 of 407

Note that the value *DEFAULT for xmlFileLocation means either /ts/screens/<definition set> if there is a
definition set specified in the URL, Otherwise it means /ts/screens/.

Step 5.

Save the screen and test the drop-down.

Step 6.

Note that using the LANGUAGE predefined variable you can fill the drop down with entries sourced from
language specific data.

Copy the file JobTitles_en.xml to a file called JobTitles_es.xml.

Step 7.

Replace the contents with this:

eXtensions Tutorial 7 – Tables and XML Documents - Page 162 of 407

<?xml version="1.0" encoding="iso-8859-1"?>

<jobtitles>
 <title>Abogado</title>
 <title>Auditor</title>
 <title>Oficial de Mantenimiento</title>
 <title>Gerente de Control de Calidad</title>
 <title>Gerente de Cartera</title>
</jobtitles>

Step 7.

Edit the screen and change the xmlFileName property like this:

ENV.returnValue = "JobTitles_" + LANGUAGE + ".xml";

The result of this statement will be the JobTitles_<languagecode>.xml.

Step 8.

Add lang=es at the end of the URL and you will notice how the drop down will now have the Spanish language
entries from the Spanish JobTitles_es.xml.

For example http://myhost/ts/ts2/index.html?dev&definitionSet=myproject&lang=es

Performance Considerations

Once the data has been stored in a table it will be reused for the duration of the session except when a
dynamic table is used.

Usage of dynamic tables should be carefully considered because they will most definitely have a performance
impact.

Each time a screen arrives, for each extension whose data is sourced from a Dynamic Table, the query request
will run to get the data from the server and store the data in the table.

The performance of a dynamic table can be improved if the same request is commonly issued repeatedly, by
using the keepLastKey option. This causes Axes to store the key of the last request, and if another request is
made for the same key, the results of the last request are reused (without any access to the server).

keepLastKey can be specified on the extensions that can use a dynamic table (The drop down and radio
buttons extensions), or it can be specified in a script as the 4th parameter of the
Axes.TableManager.loadDynamicTable function)

Some Usage Ideas

You can use tables for a lot more than just filling combo boxes and setting up radio button sets.

For example, a common system design requirement is a set of information that defines the characteristics of a
system. If you were writing an RPG server based application you would typically put such information into a
data area or a data base table.

Here's an example of doing this with a static table.

Open the Projects Home Page. Select your project and then use the Edit Static Tables option.

Add this new static table into your application:

eXtensions Tutorial 7 – Tables and XML Documents - Page 163 of 407

-- ==
-- MySystemInfo - Single row static table containing information about my system
-- ==

 DefineObjectInstance {
 className = "StaticTable",
 name = "MySystemInfo",
 source = "inline",
 rows = {
 {
 companyName = "Acme and Acme",
 companyWebSite = "www.mycompany.com",
 productVersion = "1.0",
 defaultLanguage = "English",
 defaultOS400Library = "MYLIBRARY"
 }
 }
 };

Now add a push button like this to the IBM i Main menu:

For the onClick property use this scripting:

/* Load all static tables, in case they are not already been loaded */
/* If they are already loaded this request will just be ignored */

TABLEMANAGER.loadStaticTables(USERENV.staticTablesFile);

/* Now get a reference to the "MySystemInfo" static table defined on the server */
/* Then put a reference to row/child 0 directly into the USERENV object */

USERENV.systemInfo = TABLEMANAGER.getTable("MySystemInfo").child(0);

if (USERENV.systemInfo == null)
{
 window.alert("MySystemInfo row could not be read");
}
else
{
 var sMessage = "";
 sMessage += "Company = " + USERENV.systemInfo.companyName + "\r";
 sMessage += "Website = " + USERENV.systemInfo.companyWebSite + "\r";
 sMessage += "Version = " + USERENV.systemInfo.productVersion + "\r";
 sMessage += "Language = " + USERENV.systemInfo.defaultLanguage + "\r";
 sMessage += "Library = " + USERENV.systemInfo.defaultOS400Library + "\r";
 window.alert(sMessage);
}

/* USERENV.systemInfo is now a real script object, so other scripts can */
/* now just access USERENV.systemInfo.companyWebSite (say) directly */

Save your screen changes.

You may have already loaded the static tables, so to be sure, close and restart your aXes development session.

Redisplay the IBM i Main Menu and click the Test Static Table Access button.

You should see a message box like this:

eXtensions Tutorial 7 – Tables and XML Documents - Page 164 of 407

This example demonstrates how a static table may be used to provide useful control
information scripts.

Controlling Axes Using a System Definition Table
A common requirement in aXes implementations is to set up soft coded values that can be used to generically
control your eXtension scripts and aXes application.

Such soft coded values are variously referred to as system values, settings, definitions or properties.

Note: Every application ever created has such settings to change how the application behaves at each
deployment site or even for each user. Typically the settings are permanently stored in DB2/400 data
base tables or in IBM i data areas.

The following material describes a simple and extensible technique for setting up soft coded system definitions
for your aXes applications. The definitions are easily accessed by eXtension scripts, almost infinitely extensible
and easy to deploy.

If you are interested in IT technologies this technique is a practical example of using JSON in your aXes
applications.

Step 1 – Set up your system definition data base table
In this example a data base table (an IBM i physical file) named MYSYSDEF is created in library QGPL. The SQL
command to create this table could be like this - but you could just easily create the table using traditional
DDS …

CREATE TABLE QGPL/MYSYSDEF (SYSNAME CHAR (10) NOT NULL, JSONDATA CHAR (500) NOT NULL)

This table is logically keyed by a char(10) system name.

The char(500) JSONDATA field will store the system definition values - referred to as properties from now on.

The example system definition properties to be stored in table MYSYSDEF are:
 The company name.
 The URL to be used for web search requests.
 A flag indicating whether users are allowed to do web searches.

Step 2 – Define a dynamic query to read data base table
MYSYSDEF

Your eXtension scripting will need to be able to read the MYSYSDEF table - so you need to define an SQL query
into your project's Dynamic Tables definition file:

DefineObjectInstance {
 className = "DynamicTable",
 name = "MYSYSDEF",
 source = "sql",
 selectSQLcommand = "JSONDATA from QGPL.MYSYSDEF where SYSNAME = ':SQLVariable_System' ",
 resultColumnNames = { "JSONDATA" },
 };

Save your changes and restart any developer sessions.

eXtensions Tutorial 7 – Tables and XML Documents - Page 165 of 407

Step 3 – Read data base table MYSYSDEF when the user logs on

Put this function into your project's USERENV.JS file - as part of your USERENV object:

 /* --- */
 /* Load the system definition from MYSYSDEF file for the system name specified */
 /* --- */

 loadSYSDEF : function(sysname)
 {
 /* Load the SQL table build by reading table MYSYSDEF for the specified system name.
The */

AXES.TableManager.loadDynamicTable("MYSYSDEF",USERENV.dynamicTablesFile,{SQLVariable_System:s
ysname}, false);
 var oTable = AXES.TableManager.getTable("MYSYSDEF");
 var oChild = oTable.child(0);

 /* Handle not found */

 if (oChild == null)
 {
 USERENV.SYSDEF = {}; /* Create default empty USERENV.SYSDEF object */
 window.alert("USRENV.loadSYSDEF: MYSYSDEF load failed. No data available for system
named " + sysname);
 }

 /* Attempt to convert JSON data in USERENV.SYSDEF java script object */

 else
 {
 try
 {
 USERENV.SYSDEF = eval("({ " + oChild.JSONDATA + " })");
 }
 catch (oe)
 {
 USERENV.SYSDEF = {}; /* Create default empty USERENV.SYSDEF object */
 window.alert("USRENV.loadSYSDEF: Error " + oe.description + " detected when
loading JSONDATA from MYSYSDEF.");
 }
 }

 /* Insert the correct default values for all missing USERENV.SYSDEF properties */
 /* This saves all later scripts from having to check whether the property exists */

 {
 var SYSDEF = USERENV.SYSDEF;
 if (SYSDEF.companyName == null) SYSDEF.companyName = "NOT AVAILABLE";
 if (SYSDEF.allowSearch == null) SYSDEF.allowSearch = false;
 if (SYSDEF.searchEngine == null) SYSDEF.searchEngine = "http://www.google.com";
 }

 /* Finished */

 return;

 }, /* <-- remember the trailing comma */

Save your changes and restart any currently open developer sessions.

Now edit your project so that at application sign on it executes the new USERENV.loadSYSDEF("SYSTEM1");
function in the onSignOn event, like this:

eXtensions Tutorial 7 – Tables and XML Documents - Page 166 of 407

Save your changes.

Step 4 – Define your system values in the MYSYSDEF table

Using the IBM i command UPDDTA FILE(MYSYSDEF) or a similar application insert a row (record) in to the
MYSYSDEF table as follows:

SYSNAME Value JSONDATA Value- exact case is required

SYSTEM1

companyName : "ACME", allowSearch : true

Note: Double check the entry for exact case, quotes, colons and commas.

Step 5 – Check that it all works okay

Name the IBM i main system menu and add two push button eXtensions.

eXtensions Tutorial 7 – Tables and XML Documents - Page 167 of 407

The first, titled Show Values should do this in its onClick event:

window.alert("companyname=" + USERENV.SYSDEF.companyName);
window.alert("allowSearch=" + USERENV.SYSDEF.allowSearch.toString());
window.alert("searchEngine=" + USERENV.SYSDEF.searchEngine);

The second, titled Search the Web should do this in its onClick event:

window.open(USERENV.SYSDEF.searchEngine,"_blank");

Additionally, the Search the Web button should have its visibility conditioned by altering the visible property
to execute this script:

 ENV.returnValue = USERENV.SYSDEF.allowSearch;

Like this :

eXtensions Tutorial 7 – Tables and XML Documents - Page 168 of 407

Save your changes and start a new user 5250 session.

Click the Show Values button. You should see 3 message boxes like this:

Click the Search the Web button.

You should see a new web page open up with the Google search engine displayed.

--

Now - update the SYSTEM1 row in the MYSYSDEF data base table so that the field JSONDATA contains this
data:

 companyName : "Wigets", allowSearch : true, searchEngine : "http://www.bing.com"

being careful with case, colons, quotes and commas.

Start a new user session so that the updated MYSYSDEF data is loaded at log on.

When you click the Search Values button you should see the company name Widgets and the search engine
URL as Microsoft's Bing.

When you click the Search the Web button you should see the Microsoft Bing search engine instead of the
Google engine displayed.

--

Finally, update the JSONDATA field in the MYSYSDEF data base table to be like this:

 companyName : "Wigets", allowSearch : false, searchEngine : "http://www.bing.com"

Start a new user session to pick up the modified data the MYSYSDEF table.

The Search the Web button should not appear because its visibility has been conditioned by
USERENV.SYSINFO.allowSearch property – which is now false.

eXtensions Tutorial 7 – Tables and XML Documents - Page 169 of 407

The key to all of this is that you have changed the behaviour of your aXes application without changing
anything in a an eXtension script – you have only changed a row in the MYSYSDEF data base table.

Step 6 – Basic Concepts
The field or column JSONDATA in your MYSYSDEF table contains a JSON (JavaScript Object Notation) string.

When it is read from the MYSYSDEF table it can be converted directly to a JavaScript object by the JavaScript
eval() function. This happens in this line of code in USERENV.loadSYSDEF():

 USERENV.SYSDEF = eval("({ " + oChild.JSONDATA + " })");

The JSON string approach is very powerful because:

• It converts directly into a JavaScript object named USERENV.SYSDEF.

• It is extremely extensible because it allows you to invent new system definition properties at any time.

For example if you change the JSONDATA field/column to:

shoeSize :2, hatSize: 14, companyName : "Wigets", allowSearch : false, searchEngine :
"http://www.bing.com"

then you have just invented two new USERENV.SYSDEF properties that you can immediately reference in
your eXtension scripts as USERENV.SYSDEF.shoeSize and USERENV.SYSDEF.hatSize.

1. You can also define arrays and even JavaScript functions in JSONDATA - see the following optional

advanced capabilities steps.

Step 7 – Infinite Extensibility , JSON Formatting and Default
Values

Adding new properties is easy and almost infinitely extensible – you just add them to the JSONDATA
field/column in your MYSYSDEF table and then you can immediately reference them in your eXtension scripts
using the name format USERENV.SYSDEF.propertyname.

You can add numbers as name : number and strings as name : "string".

Strictly speaking the JSON format is:

"name" : numeric value or "name" : "string value"

Generally you can use either format - but the property names are always case sensitive.

You need to be careful with using the special ":" and "," separation characters.

If you get the syntax wrong then this line in USERENV.loadSYSDEF() will pop up:

window.alert("USRENV.loadSYSDEF: Error " + oe.description + " detected when loading
JSONDATA from MYSYSDEF.");

When adding new properties you need to consider aXes applications that you may have already deployed. For
example, you could invent a new property called myNewProperty, add it to your MYSYSDEF table and then
immediately start using it in your eXtension scripts.

However, when you deploy your application you might find that in the deployed application environment there
is not a myNewproperty value defined in the MYSYSDEF table – so your application will get an error when it
tries to reference the property.

This is very easily solved – when you add a new property always add a default value for it to the
USERENV.loadSYSDEF() function. That is why this code exists in USERENV.loadSYSDEF and it is also why the
first example displayed the search engine as Google …

 /* Insert the correct default values for all missing USERENV.SYSDEF properties */
 /* This saves all later scripts from having to check whether the property exists */

 {

eXtensions Tutorial 7 – Tables and XML Documents - Page 170 of 407

 var SYSDEF = USERENV.SYSDEF;
 if (SYSDEF.companyName == null) SYSDEF.companyName = "NOT AVAILABLE";
 if (SYSDEF.allowSearch == null) SYSDEF.allowSearch = false;
 if (SYSDEF.searchEngine == null) SYSDEF.searchEngine = "http://www.google.com";
 }

So you would add a line like this:

 if (SYSDEF.myNewProperty == null) SYSDEF.myNewProperty = 500; /* Say */

or:

 if (SYSDEF.myNewProperty == null) SYSDEF.myNewProperty = "YYYYYXXX"; /* Say */

so that USERENV.SYSDEF.myNewProperty always exists – even it is not defined by the JSONDATA string read
from the MYSYSDEF data base table.

Note: This code is also a good place to document all the properties that exist in your USERENV.SYSDEF object.

Step 8 – Advanced Capabilities – Arrays of System Properties

You can easily define arrays in a JSON string.

Try adding this to the JSONDATA field/column in your MYSYSDEF data base table:

 validTypes : ["A", "B", "C"]

Following the rule of always setting up a default value for a new property you should add this to your
USERENV.loadSYSDEF() function:

 if (SYSDEF.validTypes == null) SYSDEF.validTypes = []; /* empty array */

In an eXtension script activated by a push button execute this script:

var SYSDEF = USERENV.SYSDEF;
var message = "Found valid types :";

for (var index in SYSDEF.validTypes)
{
 message += "\r" + SYSDEF.validTypes[index]; /* Insert value preceded by a CR */
}

window.alert(message);

When the script is executed you should see:

You can also define arrays of number and even arrays of objects. For example:

Sizes : [{x:1, y:2}, {x:3, y:4} , {x:5, y:6}]

defines an array of objects. The array is named Sizes and each entry in the array is an object containing the
properties x and y – which could be processed in a JavaScript loop like this:

var SYSDEF = USERENV.SYSDEF;

for (var index in SYSDEF.Sizes)
{

eXtensions Tutorial 7 – Tables and XML Documents - Page 171 of 407

 var o = SYSDEF.Sizes[index];

 o.x and o.y are now accessible to the code.
}

Step 9 – Very Advanced Capabilities - Functions and "Soft" Logic

As a very advanced capability you can also define JavaScript functions in a JSON string.

First imagine a new function named showSearchEngine in your USERENV.SYSDEF object.

This function will contain the logic that is executed when a user requests a web search, rather than just the
state that properties contain.

To try this out put a default value for the function into your USERENV.loadSYSDEF() function like this:

 if (SYSDEF.showSearchEngine == null) SYSDEF.showSearchEngine = function(){};

So by default the showSearchEngine() function does nothing – it just starts and ends.

Save your changes.

Now change the "Search the Web" button to do this when it is clicked:

 USERENV.SYSDEF.showSearchEngine();

This means when the "Web Search" button is clicked the function showSearchEngine() in the USERENV.SYSDEF
object will be executed.

Start a new user session and verify that your Search the Web button now does nothing at all when it is
clicked.

--

Now update your SYSTEM1 definition in the MYSYSDEF data base table to include this:

 showSearchEngine : function(){ window.open("http://www.google.com"); }

Start a new user session. You should find that now when you click the Search the Web button that a Google
window opens.

--

Now update your SYSTEM1 definition in the MYSYSDEF data base table to include this:

 showSearchEngine : function(){ window.alert("Do not click this button"); }

Start a new user session. You should find that now when you click the Search the Web button that the
message "Do not click this button" appears.

--

The key point here is that you have changed the logic in showSearchEngine by changing a record in a data
base table on the server – you did not need to change any scripting on the client.

This is an example of how you can not only make USERENV.SYSDEF based properties "soft" – you can also
make logic "soft" as well.

It would not be viable or sensible to try to script everything (or even most things) this way – but in situations
where site dependent calculations or special variable logic is required this capability may be very powerfully
used.

SQL and CCSIDs

When using SQL commands to load static or dynamic tables you may need to know about CCSID handling.

In this example a data base table named PBEMPF is used. It has these columns:

eXtensions Tutorial 7 – Tables and XML Documents - Page 172 of 407

Name Type Description
EMPNO Alpha(5) Employee Number
EMNAM Alpha(14) Employee Name – Open field - CCSID 937
EMADR Alpha(62) Employee Address – Open field - CCSID 937

Note: CCSID 937 is Traditional Chinese.

The contents of table PBEMPF are to be loaded as a static table named TEST03.

This is done adding an instruction like this to the static table definition file:

DefineObjectInstance {
 className = "StaticTable",
 name = "TEST03",
 source = "sql",
 selectSQLcommand = "EMPNO, EMNAM, EMADR from QGPL.PBEMPF",
 resultColumnNames = { "value", "text", "address" },
 };

However, when the static tables are being loaded this error is displayed:

This error is indicating that data in the file connot be converted to the code page being used by the aXes
server.

To avoid this issue the static table definition is changed to this:

 DefineObjectInstance {
 className = "StaticTable",
 name = "TEST03",
 source = "sql",
 selectSQLcommand = "EMPNO, CAST(EMNAM AS CHAR(14) CCSID 65535), CAST(EMADR AS
CHAR(62) CCSID 65535) from QGPL.PBEMPF",
 resultColumnNames = { "value", "text", "address" },
 resultColumnCCSID = { text=937, address=937 };
 };

The CAST operations indicate that ENNAM and EMADR are to be read as binary data.

The ResultColumnCCSID definition then informs aXes that the result columns logically named text and address
should be treated as CCSID 937 (Traditional Chinese) data.

The EMPNAM and EMPADR values can now be used in a drop down eXtension, like this example displaying
ROW.text + “ – “ + ROW.address:

eXtensions Tutorial 7 – Tables and XML Documents - Page 173 of 407

Note: Make sure to confirm EMNAM and EMADR’s defined CCSID is 937 to avoid error not related to this
example.

Tip for handling SQL variables and differing CCSIDs
Taking data from a Unicode based browser and passing it around for use in EBCDIC based SQL commands and
databases can sometimes be slightly problematic.

Here's a tip for a way you may be able to get around Unicode and EBCDIC code page conversion situations
using an SQL feature called a Unicode Literal.

In an SQL command you can type requests containing things like:
WHERE GREETING LIKE '%HELLO%'

You can also type:
WHERE GREETING LIKE UX'002500480045004C004C004F0025'

which is pretty much the same thing except that its meaning is absolutely exact in all code pages. Here
0025=%, 0048=H, 0045=E etc. are in Unicode hex format (for example see
http://www.fileformat.info/info/unicode/char/48/index.htm for what a Unicode “H” is). This technique may be
most useful when using SQLVariable substitution variables.

In a dynamic table SQL definition you can also code:
CUSTNAME LIKE ':SQLVariable_Name'

and then use the variable in client-side JavaScript like this:

var SearchString = "%" + FIELDS("NAME").getValue() + "%"; /* A %value% scan value */
var SQLVars = { SQLVariable_Name : SearchString };
TABLEMANAGER.loadDynamicTable("Test", etc, SQLVars, etc);

In the SQL definition you might also code something like this:
CUSTNAME LIKE UX':SQLVariable_Name'

And in the client-side JavaScript use a function that converts the JavaScript strings into UX style SQL literal
values:

var SearchString = "%" + FIELDS("NAME").getValue() + "%";
var SQLVars = { SQLVariable_Name : USERENV.toSQLUnicode(SearchString) };
TABLEMANAGER.loadDynamicTable("Test", <dynamicTables File>, SQLVars, <keepLastKey
option>);

The function toSQLUnicode used above is a simple function coded in the USERENV object:

toSQLUnicode : function(s)
{
 var r = "";
 if (s != null)
 {
 s = s.toString();

eXtensions Tutorial 7 – Tables and XML Documents - Page 174 of 407

 for (var i = 0; i < s.length; i++)
 {
 var cc = s.charCodeAt(i);
 var uc = cc.toString(16).toUpperCase();
 while (uc.length < 4) uc = "0" + uc;
 r += uc;
 }
 }
 return(r);
}, /* <- Remember the comma */

You can go further and specify the exact conversion by making the LIKE clause on the server into something
like this:

 CUSTNAME LIKE CAST(UX':SQLVariable_Name' AS VARCHAR(50) CCSID 297)

which takes the Unicode literal and then unequivocally converts it to EBCDIC CCSID 297 - which is then used
for the LIKE comparison value - and is presumably the same code page as the field CUSTNAME.

You don’t normally need to do a CAST like this (you could experiment to confirm this), but casting may be
significant with DBCS languages that need SO (Shift-Out) and SI (Shift-In) characters in their EBCDIC
representations because shift characters are not normally present in Unicode strings.

If you want to try using some SQL UX literals manually using the IBM i's STRSQL command, here is the source
for an HTML page that will turn what you type in into SQL UX literals ready for copy/paste into your 5250
STRSQL session:

<html>
<head>
<script type="text/javascript">
function toSQLUnicode(s)
{
 var r = "";
 if (s != null)
 {
 s = s.toString();
 for (var i = 0; i < s.length; i++)
 {
 var cc = s.charCodeAt(i);
 var uc = cc.toString(16).toUpperCase();
 while (uc.length < 4) uc = "0" + uc;
 r += uc;
 }
 }
 return(r);
}
</script>
</head>
<body>
<input type="text" id="InputValue" />
<input type="button" value="Convert=>" onclick="OutputValue.value =
toSQLUnicode(InputValue.value);" />
<input type="text" id="OutputValue" />
</body>
</html>

Using Dynamic Tables to Produce Spreadsheets and Reports

You can use Dynamic table definitions to produce spreadsheet data. This offers a convenient way to download
data to a user’s PC. Once the data is in a spreadsheet the user can format it, save it and print it as they like.

Dynamic tables have to be defined by a professional software developer so only approved and content audited
downloads can be executed.

Note: Generic downloading tools may present some security and/or data content misinterpretation risks (eg:
end users including deleted orders into quarterly sales revenue reports).

In this tutorial three dynamic SQL requests are added to the dynamic tables definition file. Use the aXes
Projects Home page Edit Dynamic Tables option:

eXtensions Tutorial 7 – Tables and XML Documents - Page 175 of 407

Then add these three definitions named Example1, Example2 and Example3:

 DefineObjectInstance {
 className = "DynamicTable",
 name = "Example1",
 source = "sql",
 selectSQLcommand = "XHRBUABRV, XHRBUSUNT from AXESDEMO.XHRBU",
 resultColumnNames = { "value", "text" },
 resultColumnCaptions = { "Business Unit Code", "Business Unit Description" },
 };

 DefineObjectInstance {
 className = "DynamicTable",
 name = "Example2",
 source = "sql",
 selectSQLcommand = " XHREMPID, XHRGIVNME,XHRSTREET,XHRCITY,XHRSTATE from
AXESDEMO.XHREMPTN",
 resultColumnCaptions = { "Id", "First Name", "Street Address", "City", "State" },
 };

 DefineObjectInstance {
 className = "DynamicTable",
 name = "Example3",
 source = "sql",
 selectSQLcommand = "* from AXESDEMO.XHREMPTN where XHREMPID =
':SQLVariable_EmployeeId' ",
 };

Note: Any active development session needs to be closed and restarted to pick up these new dynamic table
defintions:

Next three buttons elements are added to the System I Main Menu:

Note: The Selection or command entry field is named CommandLine in this example.

The three new buttons are then given this onClick scripting:

Business Unit List Button

var result = TABLEMANAGER.convertDynamicTable("Example1",USERENV.dynamicTablesFile);
if (result.error == false)
{

eXtensions Tutorial 7 – Tables and XML Documents - Page 176 of 407

 var URL = document.location.protocol + "//" + document.location.host + "/ts/" +
result.outputFileName;
 window.open(URL,"_blank");
}

Employee Address Details Button

var result = TABLEMANAGER.convertDynamicTable("Example2",USERENV.dynamicTablesFile);
if (result.error == false)
{
 var URL = document.location.protocol + "//" + document.location.host + "/ts/" +
result.outputFileName;
 window.open(URL,"_blank");
}

Employee Details Button

var empid = FIELDS("CommandLine").getValue();
var requestdetails = { orientation:"V", SQLVariable_EmployeeId:empid };
var result =
TABLEMANAGER.convertDynamicTable("Example3",USERENV.dynamicTablesFile,requestdetails);
if (result.error == false)
{
 if (result.outputLineCount == 0)
 {
 window.alert("Employee with number " + empid + " not found. Is the number and the case
of the number correct?");
 }
 else
 {
 var URL = document.location.protocol + "//" + document.location.host + "/ts/" +
result.outputFileName;
 window.open(URL,"_blank");
 }
}

When the Business Unit List Button is clicked the SQL command named Example1 is executed. The output
sent to a CSV file. The name of the file produced is returned in result.outputFileName. The output file is then
opened in a new browser window.

So the user should see:

And when they click Open button they should see:

eXtensions Tutorial 7 – Tables and XML Documents - Page 177 of 407

From MS-Excel they can save the file to their hard drive, reformat the content, display graphs and pivot tables,
print the content, etc, etc.

The Employee Address button processing is similar. It’s processing is designed to demonstrate how quickly
more than 900 employee records can be downloaded into a spreadsheet.

When the Employee Details is button is clicked an employee number is extracted from the command input
area on the screen (eg: A002450). This is passed to the SQL command named Example3 as a SQL variable in
the normal manner. If no lines were output to the file a message is displayed indicating that employee
specified could not be found.

Significant Points

• You don’t have to invoke TABLEMANAGER.convertDynamicTable() from a button. You can invoke it from

anywhere. eg: From a hyper-link or when a drop entry is selected from an drop down containing 50
selectable spreadsheet reports.

• The definition of the SQL command for Example1 demonstrates use of the resultColumnCaptions property.

This allows the captions to be defined for the output fields to be defined. The precedence is that a
resultColumnCaption will be used if it exists, then a resultColumnName if it exists, and finally an
automatically generated caption like Column_n or Field_n will be used.

• You can separate your spreadsheet SQL commands from your other SQL commands by putting them in

another file. The file that contains the dynamic SQL definitions is specified as property
USERENV.dynamicTablesFile - which defaults to "tables_dynamic.txt". You could could change this to
TABLEMANAGER.convertDynamicTable(“Example1”,”spreadsheetTables.txt”), for example, where
spreadsheetTables.txt contains a different set of dynamic table definitions. Changing the source file name
like this can also be used to logically partition access to the SQL commands by user, department, group,
etc.

• The Employee Details example demonstrates extracting information from the current screen and passing

it to the SQL request. For example - if the current screen displayed a product, then the product number
could be extracted and passed to an SQL command that listed the sales of the product for the last 12
months.

eXtensions Tutorial 7 – Tables and XML Documents - Page 178 of 407

• The Employee Details example also demonstrates adding additional properties to the SQL request in

addition to the usual SQL variables. The possibilities include:

Name Meaning
orientation H or V indicating whether the spreadsheet columns should be arranged

horizontally or vertically. The default is H.
outprefix Output file prefix. Default is TemporaryFile.
outsuffix Output file suffix. Default is csv.
outfolder Output file folder. Default is <axes root folder>/ts/
delimiter String field delimiter. Default is “ (double quote).
seperator Field separator Default is , (comma)
outputCCSID Output file CCSID/Code page. Must be valid windows client CCSID such

as 950 or 932 Default is 1208 (UTF-8) which is the best choice for most
situations. Make sure that the SQL dynamic table is also defined
correctly with the source CCSID for columns read.

 The result object returned by TABLEMANAGER.convertDynamicTable() contains these properties:

Name Meaning
outputFilePath The output path (folder) in which the result file was produced. This is an

IFS folder name, which typically is not the same as a URL reference to
the file.

outputFileName The output file name.
outputLineCount The number of lines written to the output file, including any column

headings.
error True/false. Indicates that an error was trapped.
errorDesc A description of the trapped error, if available. This message si

automatically displayed and traced so normally you do not need to do
this.

 The temporary files are put into the specified server folder so they can be accessed over the Internet.

They are not automatically deleted because it is impossible to exactly know when to delete them.
Typically they are deleted by generic name (eg: TemporaryFile*.csv) as part of overnight batch
processing logic, or in high volume situations, they may be quickly scanned every hour or so and all
files that are older than one hour are deleted (say).

More about using Dynamic Tables with SQL

Here are some more examples and tips for using SQL with eXtensions:

SQL Example 1 – Using STRSQL to Test your commands first

Here's a basic SQL example

select the department fields (XHRDEPCDE and XHRDEPNME) from the department file (XHRDEPT).

Test it on your iSeries in this format, using STRSQL:

SELECT XHRDEPCDE, XHRDEPNME FROM AXESDEMO/XHRDEPT

Here it is in the format when defined in an Axes Dynamic table - the slash is replaced with a dot:

SELECT XHRDEPCDE, XHRDEPNME FROM AXESDEMO.XHRDEPT

If we want to output the result to a MS excel spreadsheet, we first create a dynamic table containing the SQL
statement, like this (remembering to remove the initial "select"):

 DefineObjectInstance {
 className = "DynamicTable",
 name = "SQLExample01",
 source = "sql",
 selectSQLcommand = " XHRDEPCDE, XHRDEPNME FROM AXESDEMO.XHRDEPT",
 resultColumnCaptions = { "Department Code", "Department Name" },
 };

eXtensions Tutorial 7 – Tables and XML Documents - Page 179 of 407

Then we create an Axes button that makes use of the dynamic table, with onClick script as follows:

var result = TABLEMANAGER.convertDynamicTable("SQLExample01",USERENV.dynamicTablesFile);
if (result.error == false)
{
 var URL = document.location.protocol + "//" + document.location.host + "/ts/" +
result.outputFileName;
 window.open(URL,"_blank");
}

When the button is clicked, it should produce a simple list of departments in a spreadsheet, like this:

SQL Example 2 – Joining Files

Suppose we wanted to do a basic JOIN between the Departments (XHRDEPT) and Employees (XHREMPTN) to
show the department name for each employee.

When a field could come from more than one file, its file has to be specified, so in this code the field
XHRDEPCDE becomes XHRDEPT.XHRDEPCDE

select XHRDEPT.XHRDEPCDE, XHRDEPT.XHRDEPNME, XHRSURNME, XHRGIVNME
from AXESDEMO/XHRDEPT, AXESDEMO/XHREMPTN
where XHRDEPT.XHRDEPCDE = XHREMPTN.XHRDEPCDE
ORDER BY XHRDEPT.XHRDEPCDE, XHRSURNME

or, to make it easier to refer to the files, we could give the files short names (de for Department, em for
Employee)

select de.XHRDEPCDE, de.XHRDEPNME, XHRSURNME, XHRGIVNME
from AXESDEMO/XHRDEPT de, AXESDEMO/XHREMPTN em
where de.XHRDEPCDE = em.XHRDEPCDE
ORDER BY de.XHRDEPCDE, XHRSURNME

we create a dynamic table containing the SQL statement, (remembering to change the / to a dot, and
removing the select) like this:

 DefineObjectInstance {
 className = "DynamicTable",
 name = "SQLExample02",
 source = "sql",
 selectSQLcommand =
" de.XHRDEPCDE, de.XHRDEPNME, XHRSURNME, XHRGIVNME from AXESDEMO.XHRDEPT de,
AXESDEMO.XHREMPTN em where de.XHRDEPCDE = em.XHRDEPCDE ORDER BY de.XHRDEPCDE, XHRSURNME ",
 resultColumnCaptions = { "Department Code", "Department Name", "Employee Surname",
"Employee Given Name" },
 };

To make it easier to read, we can use square brackets instead of double quotes around the SQL string. This
allows us to use returns to break up the SQL statement into its sections.

eXtensions Tutorial 7 – Tables and XML Documents - Page 180 of 407

 DefineObjectInstance {
 className = "DynamicTable",
 name = "SQLExample02",
 source = "sql",
 selectSQLcommand =
 [[
 de.XHRDEPCDE, de.XHRDEPNME, XHRSURNME, XHRGIVNME
 from AXESDEMO.XHRDEPT de, AXESDEMO.XHREMPTN em
 where de.XHRDEPCDE = em.XHRDEPCDE ORDER BY de.XHRDEPCDE, XHRSURNME
]],

 resultColumnCaptions = { "Department Code", "Department Name", "Employee Surname",
"Employee Given Name" },

 };

Save your table, and modify the onClick routine of the Axes button to point to "SQLExample02"

If you now click the button you should see

Note: If you want to do a join where records from the first file always appear, use this syntax:

select XHRDEPT.XHRDEPCDE, XHRDEPT.XHRDEPNME, XHRSURNME, XHRGIVNME
from AXESDEMO/XHRDEPT
LEFT OUTER JOIN AXESDEMO/XHREMPTN
ON XHRDEPT.XHRDEPCDE = XHREMPTN.XHRDEPCDE
ORDER BY XHRDEPT.XHRDEPCDE, XHRSURNME

Note: If you want to do a join that returns only the records in the first file that don't have a match in the
second file, use this syntax

select XHRDEPT.XHRDEPCDE, XHRDEPT.XHRDEPNME, XHRSURNME, XHRGIVNME
from AXESDEMO/XHRDEPT
EXCEPTION JOIN AXESDEMO/XHREMPTN
ON XHRDEPT.XHRDEPCDE = XHREMPTN.XHRDEPCDE
ORDER BY XHRDEPT.XHRDEPCDE, XHRSURNME

SQL Example 3 – Summarizing Data

Suppose that instead of showing one line for every employee, we wanted a summary result, with one line for
each department. We use the GROUP BY parameter

select de.XHRDEPCDE
from AXESDEMO/XHRDEPT de, AXESDEMO/XHREMPTN em
where de.XHRDEPCDE = em.XHRDEPCDE
GROUP BY de.XHRDEPCDE

When we work with a group of records there are several useful things we can do with each group of detail
records. Examples are:

eXtensions Tutorial 7 – Tables and XML Documents - Page 181 of 407

COUNT
SUM
AVG
MAX
MIN

So, in our summary query we can show the number of employees, the average salary, the maximum salary,
and the total salary for each department, as follows

select de.XHRDEPCDE, MAX(de.XHRDEPNME), COUNT(*), AVG(XHRSALARY),
MAX(XHRSALARY), SUM(XHRSALARY)
from AXESDEMO/XHRDEPT de, AXESDEMO/XHREMPTN em
where de.XHRDEPCDE = em.XHRDEPCDE
GROUP BY de.XHRDEPCDE

we create a dynamic table containing the SQL statement, like this:

 DefineObjectInstance {
 className = "DynamicTable",
 name = "SQLExample03",
 source = "sql",
 selectSQLcommand =
 [[de.XHRDEPCDE, MAX(XHRDEPNME), COUNT(*), AVG(XHRSALARY), MAX(XHRSALARY),
SUM(XHRSALARY)
 FROM AXESDEMO.XHRDEPT de, AXESDEMO.XHREMPTN em
 where de.XHRDEPCDE = em.XHRDEPCDE
 GROUP BY de.XHRDEPCDE
]],
 resultColumnCaptions = { "Department Code", "Department Name", "Number of Employees",
"Average Salary", "Maximum Salary", "Total Salary" },
 };

Save your table, and modify the onClick routine of the Axes button to point to "SQLExample03"

If you now click the button you should see:

SQL Example 4 – Controlling Data Extracted

When you want to show only some of the records on the file, there are two ways to select them.

Method 1) When you are selecting records based on field values for individual records, you add extra AND
commands to the WHERE

using comparison operators like > < = != <= >= or BETWEEN, LIKE, IN

For example - Get all the employees with a salary outside 30,000 to 50,000, who are not in the SALES or
LEGAL departments, with surnames beginning with S.

SELECT XHREMPID, XHRSURNME, XHRGIVNME, XHRSALARY, XHRBUABRV
FROM AXESDEMO/XHREMPTN
WHERE XHRSALARY NOT BETWEEN 30000 AND 50000
AND XHRBUABRV NOT IN ('SALES', 'LEGAL')
AND XHRSURNME LIKE 'S%'

we create a dynamic table containing the SQL statement, like this:

eXtensions Tutorial 7 – Tables and XML Documents - Page 182 of 407

 DefineObjectInstance {
 className = "DynamicTable",
 name = "SQLExample04",
 source = "sql",
 selectSQLcommand =
 [[
 XHREMPID, XHRSURNME, XHRGIVNME, XHRSALARY, XHRBUABRV
 FROM AXESDEMO.XHREMPTN
 WHERE XHRSALARY NOT BETWEEN 30000 AND 50000
 AND XHRBUABRV NOT IN ('SALES', 'LEGAL')
 AND XHRSURNME LIKE 'S%'
]],
 resultColumnCaptions = { "Employee ID", "Surname", "Given Name", "Salary", "Business
Unit" },
 };

Save your table, and modify the onClick routine of the Axes button to point to "SQLExample04"

If you now click the button you should see something like:

Note:
Method 2) If you want to select values based solely on summary values, you use a different keyword - HAVING

Suppose you wanted to select all the departments with an average above a value

SELECT XHRDEPCDE, AVG(XHRSALARY)
FROM AXESDEMO/XHREMPTN
GROUP BY XHRDEPCDE
HAVING AVG(XHRSALARY) > 60000
ORDER BY XHRDEPCDE

SQL Example 5 – Nested Queries

Suppose you want to do one query and then compare the result of that query with another file. You can nest
queries by making the query one of the FROM values:

For example, list all the employees with 50% higher than the average for their department.

One query works out what the average salary is for all the departments.
The employees file is joined with the result of that query, to determine which employees have 50% higher than
the average salaries for the department.

There are two FROM entries in this query; one is the employees file (named em), one is a nested query
(named mysummary)

eXtensions Tutorial 7 – Tables and XML Documents - Page 183 of 407

select em.XHREMPID, em.XHRSURNME, em.XHRGIVNME, em.XHRSALARY,
mysummary.empcount, mysummary.avgsal, em.XHRDEPCDE, em.XHRSTATE
FROM
AXESDEMO/XHREMPTN em,
(
select XHRDEPCDE, COUNT(*) empcount, AVG(XHRSALARY) avgsal
from AXESDEMO/XHREMPTN
GROUP BY XHRDEPCDE
ORDER BY XHRDEPCDE
) mysummary
where
mysummary.XHRDEPCDE = em.XHRDEPCDE AND
em.XHRSALARY > (mysummary.avgsal * 1.5)

Note how result columns in the summary query have been assigned names (e.g. avgsal) and then referred to
in the WHERE condition.

we create a dynamic table containing the SQL statement, like this:

 DefineObjectInstance {
 className = "DynamicTable",
 name = "SQLExample05",
 source = "sql",
 selectSQLcommand =
 [[
 em.XHREMPID, em.XHRSURNME, em.XHRGIVNME, em.XHRSALARY,
 mysummary.empcount, mysummary.avgsal, em.XHRDEPCDE, em.XHRSTATE
 FROM
 AXESDEMO.XHREMPTN em,
 (
 select XHRDEPCDE, COUNT(*) empcount, AVG(XHRSALARY) avgsal
 from AXESDEMO.XHREMPTN
 GROUP BY XHRDEPCDE
 ORDER BY XHRDEPCDE
) mysummary
 where
 mysummary.XHRDEPCDE = em.XHRDEPCDE AND
 em.XHRSALARY > (mysummary.avgsal * 1.5)
]],
 resultColumnCaptions = { "Employee ID", "Surname", "Given Name", "Salary", "Num
Employees", "Average Salary", "Department", "State" },
 };

Save your table, and modify the onClick routine of the Axes button to point to "SQLExample05"

If you now click the button you should see something like:

SQL Example 6 – Data Manipulation and Date Handling

Manipulation of data in fields, and Dates.

You may need to rearrange data within fields, in order to do comparisons.

The following example (converting a numeric YYYYMMDD date into an ISO date) demonstrates
a) number to alphanumeric conversion (CHAR)
b) substring (SUBSTR)
c) concatenation (||)

eXtensions Tutorial 7 – Tables and XML Documents - Page 184 of 407

SELECT XHREMPID, YYYYMMDD,
Date(
 Days(SUBSTR(CHAR(YYYYMMDD),1,4)||'-'|| SUBSTR(CHAR(YYYYMMDD),5,2)|| '-'||
SUBSTR(CHAR(YYYYMMDD),7,2))
)
)
FROM EMPLOYEEFILE

It also demonstrates some of the DATE functions that are available when the date is in ISO (YYYY-MM-DD)
format
Once a date is in ISO format, you can convert it to a date value, and do date arithmetic, like this:

SELECT XHREMPID, XHRSTDTE,
DATE(XHRSTDTE) + 6 MONTHS
FROM AXESDEMO/XHREMPTN

Other examples of useful functions are

DATE
DAY
DAYNAME
CURDATE
DAYOFWEEK
DAYOFMONTH
DAYOFYEAR
DAYS
MONTH
MONTHNAME
MONTHSBETWEEN
WEEK
YEAR

You can add durations of
YEARS
MONTHS
DAYS

to a date.

See SQL reference for more details about DateTime arithmetic

we create a dynamic table containing the SQL statement, like this:

 DefineObjectInstance {
 className = "DynamicTable",
 name = "SQLExample06",
 source = "sql",
 selectSQLcommand =
 [[
 XHREMPID, XHRSTDTE,
 DATE(XHRSTDTE) + 6 MONTHS
 FROM AXESDEMO.XHREMPTN
]],

 resultColumnCaptions = { "Employee ID", "Start Date", "Start Date + 6 Months" },
 };

Save your table, and modify the onClick routine of the Axes button to point to "SQLExample06"

If you now click the button you should see something like:

eXtensions Tutorial 7 – Tables and XML Documents - Page 185 of 407

References:
http://www.w3schools.com/Sql/default.asp
(Good examples, but the syntax is sometimes wrong for iSeries)

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/index.jsp
(search for SQL)
 Database SQL Programming
 DB2 for i SQL Reference

eXtensions Tutorial 8 - Best Practices

Develop Standards Early
You should develop a naming standard for screens, screen fields and scripting variables before commencing a
screen modernization project. For example:

Type of Object Naming Standard
Screen SNXXXXXXXXXXX
Alpha Field in Screen FAXXXXXXXXXXX
Numeric Field in Screen FNXXXXXXXXXXX
Alpha Field in Subfile SAXXXXXXXXXXX
Numeric Field in Subfile SNXXXXXXXXXXX
Special fields repeated on many screens such as error
message fields, page/up down "+", markers, titles,
etc.

FSXXXXXXXXXXX

Script string sXXXXXXXXXXX
Script integer / whole number iXXXXXXXXXXX
Script floating point / number with decimals nXXXXXXXXXXX
Script boolean bXXXXXXXXXXX
Script object oXXXXXXXXXXX
Script object referring to HTML element hXXXXXXXXXXX
Script function fXXXXXXXXXXX
Arrays Prefix with additional a
Private member / object Prefix with additional _ (underscore)

Where XXXXXXXXXXX is a meaningful name with precise case (e.g.: ProductNumber, not Productnumber)
using letters from the English alphabet and 0 -> 9 only.

Avoid specifying fonts and colors for individual elements
Avoid specifying fonts and colors for individual screen elements. Create application styling items based on the
field's role in the application and use it instead. Refer to Tutorial 3 - Advanced Screen Enhancement and
Tutorial 10 - 5250 Screen Styling for more details and examples.

Treat screen Modernization as a Project
It's advisable to treat the modernization and customization of a 5250 applications as real IT project, rather
than ad-hoc or part time activities. This means that all the normal IT project activities like end user
consultation, detailed design, specifications, test planning, defined goals, etc should be brought into play.
Remember the old saying "If you don't have a plan then you are planning to fail".

Define your modernization "Value Proposition"
Modernizing the appearance of a 5250 screen is one thing, but adding real value to a 5250 application is
another. If you focus on appearance only, the early enthusiasm and support you may receive from your
customers and users could fade as they realize that nothing has been done to make their working lives easier,
better, faster or smarter (i.e.: more modern). It's worth spending some time at the start of a project to define
exactly what value you will add to the existing 5250 application.

Follow the 80/20 rule
In most commercial 5250 applications 20% of the application accounts for 80% of the use. Focus on
modernizing and customizing the 20% that is most used, not the 80% that is less used. You are probably
better to modernize the Order Entry screens or the Insurance Policy Master Update screens rather than the
Country Code Maintenance screens.

Documentation Library

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 8 - Best Practices , Page 187 of 407
407

Use an Incremental Delivery Plan
If you have a large 5250 application consider using a staged and incremental delivery plan of gradual
improvement rather than trying to deliver everything as a single "big bang" project. Typically this encourages
earlier feedback from your users and customers, and a more gradual learning and experience curve for your
developers.

Use static DBMS code tables in XML documents
Relatively static DBMS content used for field codes and decodes can be (re)published when it changes as XML
documents on the IFS. These documents can then be used as static table input to fill drop downs, service
scripts, etc. This may be more efficient than using SQL to access the DBMS data.

Always assess screen customizations as a user
You should always test and assess your screen customizations and eXtension scripting signed on as a user.
While you can conduct tests logged on as an aXes developer, the tests are not valid because they do not reflect
a real execution environment.

Use Two Discrete Cycles: Identify and Customize
In eXtension projects it is best if two clearly separated cycles are used.

- Identify the screens that you intend to enhance and name the fields on them. Verify that all variations
of the screen(s) involved are correctly identified.

- Then, individually customize and test the screens.

Mixing the identification and customization cycles together is not a recommended approach.

Document/Communicate USERENV content
The USERENV object is a useful way to reuse and share common properties and logic. If you spend time
documenting and communicating the details to all the project team members, this encourages re-use and
helps to enforce standards.

Versioning aXes projects
This section outlines some general notes about versioning any product, not just aXes. It does not represent
anything that is officially supported or sanctioned by LANSA or aXes.

The advice is folder based. Disk space is cheap and getting cheaper. People’s time is expensive and getting
more expensive. You can be too clever with elaborate folder structures designed to save space and end up
confusing people and causing unnecessary mistakes - KISS is best.

A simple way and low cost way to version aXes projects
Use project folders named like SSS_PPPPP_NNNN_FFF where

SSS = System Type – one of DEV, TST or PRD meaning development, test, production,
PPPPP = Project Name
NNNN = Project Build of Version Number
FFF = Optional hotfix or branch number

Development -> Test -> Production flow
When a development version is completed it is promoted to testing.
For example:

DEV_ProjectName_0001 is promoted to TST_ProjectName_0001
This flow is repeated until version 0001 is considered to be tested and ready.

When testing is complete it is promoted to production: TST_ProjectName_0001 is promoted to
PRD_ProjectName_0001. Users directly (or indirectly via a launch page) use PRD_ProjectName_0001 on their
start up URLs.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 8 - Best Practices , Page 188 of 407
407

Starting to work on a New Version
When work and testing completes on a project version a new version is started.
 For example:

DEV_ProjectName_0001 is procedurally locked and possibly archived.
DEV_ProjectName_0001 is copied to DEV_ProjectName_0002
Developers now all work on DEV_ProjectName_0002

When development completes, repeat the preceding development -> test -> production cycle and then move
on to DEV_ProjectName_0003.

Back version Maintenance
The archived and procedurally locked back version is used to perform the change.
For example – a user reports an issue on version 0005 - but people are already testing version 0006 and the
developers are already working on version 0007.

DEV_ProjectName_0005 is restored (if required) and procedurally unlocked.
DEV_ProjectName_0005 is corrected.
DEV_ProjectName_0005 is promoted to TST_ProjectName_0005 for final test.
TST_ProjectName_0005 is promoted to PRD_ProjectName_0005 when ready for production
DEV_ProjectName_0005 is procedurally locked and re-archived.
The correction may need to "propagate to the tip". This means that product version 006 (in testing)
and 0007 (under development) may also need to be corrected because they require the same
correction. This is a very common IT back version correction issue and has nothing at all to do with
aXes per se.
The DEV_ProjectName_0007 developers continued to work through all this with no impact.

Hotfixing
A variation that tracks every fix made to every version may be:

DEV_ProjectName_0005 is promoted to DEV_ProjectName_0005_001 (fix number 001)
DEV_ProjectName_0005_001 is promoted to TST_ProjectName_0005 for final test.
TST_ProjectName_0005 is promoted to PRD_ProjectName_0005 when ready for production

This variation maintains version 0005 in its original "as shipped" state and each cumulative fix is also
maintained as a complete working unit.

Branching
Use the FFF prefix (or some other variation) in the folder name to also denote a branch as well as a fix.
Branching is only usually required when a major feature or development needs to be back fitted into a
preceding version for a special case or customer.
For example - branching may be required if a customer of your application refuses to upgrade to your latest
version - but demands that a new version feature be made to work in their old version. This means you need
to put a branch into the older product version.

Going live with a new version
Let’s say you are using PRD_ProjectName_0005 and you are ready to go live with version 0006.
You can run versions 0005 and 0006 side by side for a while, gradually introducing the new version by
selectively changing user desktop URLs to use PRD_ProjectName_0006 instead of PRD_ProjectName_0005.
To avoid changing desktop URLs, you can give users a "launch page" named, for example, ProjectName.htm.
When ready to move from version 0005 to version 0006, change the launch URL in ProjectName.htm.

Tip
Put the version/build and fix numbers into the USRENV object and make them visible on some screen when a
button is clicked. This allows you to determine the exact build/version and fix level of your application that they
are using.

Supporting Multiple Customer Bespoke Versions
Use alternative name components. For example DEV_CustomerName_ProjectName_0001.

Folder Storage
The folder names used here are logical more than physical. Their actual content can be copied to cheap mass
storage space on a Windows servers and/or versioned and archived using many different PC systems – for
example, Vault.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 8 - Best Practices , Page 189 of 407
407

Establish the Deployment Model
aXes only allows one system (at the same version level) to be installed onto an IBM Server. An aXes system
can run multiple separate instances. An instance can contain multiple definition sets - each containing a
discrete and independent application.

The three levels of separation (system, instance and definition set) allow for many different deployment
configuration models. The most typical of these are:

HIGH RISK DEPLOYMENT MODEL

Here the users and developers all work within the same definition set, within the same instance, within the
same system. This is a high risk configuration because the activities of the developers will almost certainly
interfere with those of the users.

MODERATE RISK DEPLOYMENT MODEL

Here the developers and users work from separate definition sets, even though they are still working within the
same instance and system. This will reduce interference, except for occasions where developers may need to
stop and restart their aXes instance.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 8 - Best Practices , Page 190 of 407
407

TOLERABLE RISK DEPLOYMENT MODEL

Here the users and developers work in different definition sets and different instances. The major risk in this
configuration is of deploying something to a production user without first testing it in a dedicated tested
environment.

LOW RISK DEPLOYMENT MODEL

The deployment risk in the preceding model can be reduced by introducing a dedicated test instance and
definition set. Production material is bundled and deployed to the test environment for suite testing before it is
finally deployed to the production environment.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 8 - Best Practices , Page 191 of 407
407

OPTIMAL DEPLOYMENT MODEL

This type of deployment model minimizes all risks, but requires two physical or logical (LPAR) IBM i servers.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 8 - Best Practices , Page 192 of 407
407

If You Use aXes-eXtensions with aXes-Cloud
aXes-Cloud comes with all of the features of aXes including aXes-eXtensions.

aXes-Cloud uses Telnet to connect with applications on remote servers and therefore aXes
requires no installation of objects on remote servers that support the applications.

Screen identification characteristics differ when used on the local server and when used on
remote servers via Telnet. Therefore developers must identify screens as they will appear in
the production environment on the remote server, in other words in the same context as
users will use the application.

This means developers must sign on to the cloud gateway server, connect and sign on to a
remote server, start an application and then work on extending the screens. When users use
the applications, aXes-Cloud applies the enhancements built with aXes-eXtensions in real
time from the cloud gateway server.

The following table summarizes the policies for using aXes-eXtensions with aXes-Cloud:

The aXes-eXtensions projects must reside on the cloud gateway server.

Developers work on the projects on the cloud gateway server.

Developers must be connected to an application on a remote server when working on
the projects.

Warning Do not extend screens locally and assume they will operate as
you expect when the applications run on remote servers.

eXtensions Tutorial 9 – Creating your own eXtensions - Page 193 of 407

eXtensions Tutorial 9 - Creating your own eXtensions

Getting Started
eXtensions are JavaScript objects with properties, methods and events. They are defined in a JavaScript file.

The name of the JavaScript file that defines the extension must start with
Extension_ followed by your chosen extension name.

In this tutorial we will create a simple push button extension:

Which will look like this:

Clicking the button will send the Enter key by default.

To begin creating this extension, start Notepad and save the file with the name Extension_SimplePushButton.js

Remarks:

Do not use any combination of the prefix ax (Ax, AX, etc) they are reserved for aXes only developed
extensions.

When adding eXtensions to 5250 screens for subssequent use in an aXes-Cloud environment ensure you are
executing them in the same way that your end users will. See If You Use aXes-eXtensions with aXes-Cloud in
the Best Practices tutorial for more details.

A basic eXtension skeleton
Depending on your JavaScript skills, when writing the first extension you may choose an existing extension as
the starting point. Otherwise, you can use this basic eXtension skeleton:

Documentation Library

eXtensions Tutorial 9 – Creating your own eXtensions - Page 194 of 407

function DEFINE_EXTENSION_XYZ()
{
 var definition =
 {

 properties:
 {

 },

 init: function(element, elementContainer)
 {
 this._element = element ;
 this._elementContainer = elementContainer ;

 if (AXES.isTS2Engine) element.addListener("AddedToDOM",
this._handleAddedToDOM, this);

 },

 render: function(element, elementContainer)
 {

 },

 destroy: function(element, elementContainer)
 {
 element.removeListener("AddedToDOM", this._handleAddedToDOM);
 delete this._element;
 delete this._elementContainer;
 },

 _handleAddedToDOM: function(event)
 {

 },

 <other event handler(s)>

 };

 AXES.Extensions.add(definition);
}

DEFINE_EXTENSION_XYZ()

Because we know the name of the extension to create we can replace XYZ with our chosen name of
SimplePushButton.

Copy this skeleton into your Extension_SimplePushButton.js file:

eXtensions Tutorial 9 – Creating your own eXtensions - Page 195 of 407

function DEFINE_EXTENSION_SimplePushButton()
{
 var definition =
 {
 name: "SimplePushButton",

 properties:
 {

 },

 init: function(element, elementContainer)
 {
 this._element = element ;
 this._elementContainer = elementContainer ;

 if (AXES.isTS2Engine) element.addListener("AddedToDOM",
this._handleAddedToDOM, this);

 },

 render: function(element, elementContainer)
 {

 },

 destroy: function(element, elementContainer)
 {

 element.removeListener("AddedToDOM", this._handleAddedToDOM);
 delete this._element;
 delete this._elementContainer;

 },

 _handleAddedToDOM: function(event)
 {

 },

 <other event handler(s)>

 };

 AXES.Extensions.add(definition);
}

DEFINE_EXTENSION_SimplePushButton ()

The aXes defined properties section

The beginning of the eXtension object definition specifies the properties that identify it in
aXes:

function DEFINE_EXTENSION_SimplePushButton()
{
 var definition =
 {

In this section you specify these predefined properties:

• name: the name of this extension
• type: whether the extension applies to an element or to a screen.
• display: the description that is visible when you select the extension
• group: determines whether when selecting this extension all other extensions in the same group for

the same element are deselected.
• subType: determines whether the extension is used only for New elements or for both new and

existing fields on the screen.
• category: determines which category this extension belongs when displayed in Extensions Toolbox

list. Do not add this property if you will not categorize the extension.
To add a new category, the name must be “cat<categoryName>”. e.g. catMobile
Then, define the text display in Texts_Dev_<lang>.txt text file as follows:
 "catMobile.display" : "Mobile",

In your extension file, copy and paste these properties and values:

eXtensions Tutorial 9 – Creating your own eXtensions - Page 196 of 407

 var definition =
 {

name: "SimplePushButton",

group: "vis",
type: "element",
display: "Simple Push Button",
subType: "new",

The User-defined properties section
In the next section you specify the properties and events that are under your control, the ones that are visible
to the developer in aXes Designer:

We are going to add four properties as in the above picture to the button extensions:

• caption: the button caption
• style: to allow the user to apply a style to the button
• onClick: the onClick event
• sizeToField: to allow the user to resize the button to its containing field or not

Properties have a type. They can also have a default value and a description.

 properties:
 {
 caption: { type: "String", defaultStatic:"OK", description: "Text to appear on the
button." },
 style: { type: "Style", description: " Style to apply to the extension." },
 onClick: { type: "Event", defaultDynamic: "SENDKEY(ENV.defaultKey);", description: " The
button's onclick event." },
 sizeToField { type: "Boolean", defaultStatic: true, description: "Indicates whether the
button should size to its containing field or its content." };
 },

In your extension copy and paste the above four properties. Your extension should now look like this:

function DEFINE_EXTENSION_SimplePushButton()
{
 var definition =
 {
 name: "SimplePushButton",
 group: "vis",
 type: "element",
 display: "Simple Push Button",
 subType: "new",

 properties:
 {
 caption: { type: "String", defaultStatic:"OK", description: "Text to appear on the
button." },
 style: { type: "Style", description: "Style to apply to the extension." },
 onClick: { type: "Event", defaultDynamic: "SENDKEY(ENV.defaultKey);", description: "
The button's onclick event." },

sizeToField { type: "Boolean", defaultStatic: true, description: "Indicates whether
the button should size to its containing field or its content." };
 },

eXtensions Tutorial 9 – Creating your own eXtensions - Page 197 of 407

The program section

You write the executable code in the methods in the next section.

An extension has at least three methods, init, render and destroy and event handler _handleAddedToDOM and
any other event handlers that have been defined.

Initialization

The init method executes at design time and runtime:

init: function(element, elementContainer)
{
 this._element = element ;
 this._elementContainer = elementContainer ;

 if (AXES.isTS2Engine) element.addListener("AddedToDOM", this._handleAddedToDOM, this);
},

The init method is where you usually create the HTML element that your extension will visualize itself as.

It receives two parameters:

element – a reference to the aXes element object
elementContainer – usually the element's parent DIV element

In this example you use the standard createElement dhtml method to create a button:

var btn = document.createElement("button");

Get the value of the caption property:

 var btnCaption = this.getPropertyValue("caption");

Set the dhtml innerHTML button property to the value of the caption:

 btn.innerHTML = btnCaption;

Add a user-defined property to the button reference. Here we set the default function key we want to send.

 btn.sendKey = "Enter";

Add the onclick event to the html button. Because the init logic is executed at design time but we don't want
the onclick to fire when we are editing the screen, we make sure to attach the event only when not in design
mode:

 if (!this.isDesignMode())
 {
 var self = this;
 btn.onclick = function() { self._onClick(btn); };
 }

Make the button part of the tabbing order:

 this.applyTabIndex(btn);

Append the html button as a child of the container:

 elementContainer.appendChild(btn);

Save a reference to the html button for easier access in other routines:

 this.buttonElem = btn;

The init method should look like this:

eXtensions Tutorial 9 – Creating your own eXtensions - Page 198 of 407

init: function(element, elementContainer)
{
 this._element = element ;
 this._elementContainer = elementContainer ;

 var btnCaption = this.getPropertyValue("caption");

 var btn = document.createElement("button");
 btn.innerHTML = btnCaption;
 btn.sendKey = "Enter";

 if (!this.isDesignMode())
 {
 var self = this;
 btn.onclick = function() { self._onClick(btn); };
 }

 this.applyTabIndex(btn);

 elementContainer.appendChild(btn);

 this.buttonElem = btn;

 if (AXES.isTS2Engine) element.addListener("AddedToDOM", this._handleAddedToDOM, this);
},

Rendering

The render method executes at design time and runtime, after the init method. In this example we are going
to use it to size the button.

When customizing a screen, you size the button on the screen by stretching it. When the screen is saved the
size needs to be recorded as a property of the element:

 var size = element.getSize();
 button.style.width = (size.width).toString() + "px";
 button.style.height = (size.height).toString() + "px";

When sizing controls, both TS1 and TS2 modes have to be handled. TS1 sizing is done within the render
method. TS2 sizing is done in the _handleAddedToDOM event handler.

TS1

if (!AXES.isTS2Engine)
{
 /* TS1 sizing */
 var size = element.getSize();
 button.style.width = (size.width).toString() + "px";
 button.style.height = (size.height).toString() + "px";
}

TS2

_handleAddedToDOM: function(event)
{
/* TS2 sizing */
/* To improve rendering performance, The TS2 engine doesn't add a field to the */
/* DOM until all the extensions have been rendered. Elements do not have */
/* dimensions until they are added to the DOM so we use this event to do */
/* anything that requires knowledge of the size of things. */
/* For best rendering performance, avoid using this unless absolutely necessary. */

/* we have to refer to the element and the button via "this" */

 var size = this._element.getSize();
 this.buttonElem.style.width = (size.width).toString() + "px";
 this.buttonElem.style.height = (size.height).toString() + "px";

}

We are also going to apply the styles the developer may have specified in the style property:

eXtensions Tutorial 9 – Creating your own eXtensions - Page 199 of 407

 var style = this.getPropertyValue("style");
 this.applyStyle(style, btn);

Then, check the value of sizeToField property. If the value is true, set the button’s both width and height to
100% so that the size corresponds to its containing field.
 if (this.getPropertyValue("sizeToField")) {
 this.buttonElem.style.width = "100%";
 this.buttonElem.style.height = "100%";
 }

The render method should look like this:

 render: function(element, elementContainer)
 {
 var button = this.buttonElem;
 if (!AXES.isTS2Engine)
 {
 /* TS1 sizing */
 var size = element.getSize();
 button.style.width = (size.width).toString() + "px";
 button.style.height = (size.height).toString() + "px";
 }
 var style = this.getPropertyValue("style");
 this.applyStyle(style, button);
 if (this.getPropertyValue("sizeToField")) {
 this.buttonElem.style.width = "100%";
 this.buttonElem.style.height = "100%";
 }
 },

The _handleAddedToDOM event handler should look like this:

_handleAddedToDOM: function(event)
{
/* TS2 sizing */
/* To improve rendering performance, The TS2 engine doesn't add a field to the */
/* DOM until all the extensions have been rendered. Elements do not have */
/* dimensions until they are added to the DOM so we use this event to do */
/* anything that requires knowledge of the size of things. */
/* For best rendering performance, avoid using this unless absolutely necessary. */

/* we have to refer to the element and the button via "this" */

 var size = this._element.getSize();
 this.buttonElem.style.width = (size.width).toString() + "px";
 this.buttonElem.style.height = (size.height).toString() + "px";
},

Destroying

The destroy method is crucial for your extension to work properly. In this method you should remove any
object references, objects, events and anything else that is not locally defined in one of the methods.

If you created a variable of any type in the render method like this:

var x = "aaa";

then you don't need to set it to null or do anything to it in the destroy method.

However, you may have added it as a reference to some other object, typically the this pointer or some html
element. For example, you may have done something like this:

this.Xvar = x;

In this extension button we made a reference to the buttonElem:

 this.buttonElem = btn;

All references to it should be destroyed to avoid memory leaking. Add this code to the destroy method:

eXtensions Tutorial 9 – Creating your own eXtensions - Page 200 of 407

 destroy: function(element, elementContainer)
 {
 this.buttonElem.onclick = null;
 this.buttonElem.sendKey = null;
 this.buttonElem = null;
 delete this.buttonElem;

 element.removeListener("AddedToDOM", this._handleAddedToDOM);
 delete this._element;
 delete this._elementContainer;
 },

Events

For this extension we will define an onClick event.

When we attached the event to the button, we will pass the button as a parameter:

 self._onClick(btn)

All we need to do in the extension is raise the event. The developer writes the event code at design time. When
we raise the event, the event code is executed. In this button extension it will execute this code by default:

When we set up the extension in the init method, we specified Enter as the default key,
so this button will now automatically send the Enter key.

Replace this text:

<event handler(s)>

With this event routine:

_onClick: function(button)
{
 var env = { defaultKey : button.sendKey };
 this.raiseEvent("onClick", env);

}

Save the changes to your extension file.

Solution
The entire extension code should look like this:

eXtensions Tutorial 9 – Creating your own eXtensions - Page 201 of 407

function DEFINE_EXTENSION_SimplePushButton()
{
var definition =
 {

 name: "SimplePushButton",
 group: "vis",
 type: "element",
 display: "Simple Push Button",
 subType: "new",

 properties:
 {
 caption: { type: "String", defaultStatic:"OK", description: "Text to appear on the
button." },
 style: { type: "Style", description: "CSS to apply to the extension." },
 onClick: { type: "Event", defaultDynamic: "SENDKEY(ENV.defaultKey);", description: "
The button's onclick event." },
 sizeToField: { type: "Boolean", defaultStatic: true, description: "Indicates whether
the button should size to its containing field or its content." }
 },

 init: function(element, elementContainer)
 {
 this._element = element ;
 this._elementContainer = elementContainer ;

 var btnCaption = this.getPropertyValue("caption");

 var btn = document.createElement("button");
 btn.innerHTML = btnCaption;
 btn.sendKey = "Enter";

 if (!this.isDesignMode())
 {
 var self = this;
 btn.onclick = function() { self._onClick(btn); };
 }

 this.applyTabIndex(btn);

 elementContainer.appendChild(btn);

 this.buttonElem = btn;

 if (AXES.isTS2Engine) element.addListener("AddedToDOM", this._handleAddedToDOM,
this);
 },

 render: function(element, elementContainer)
 {
 var button = this.buttonElem;
 if (!AXES.isTS2Engine)
 {
 /* TS1 sizing */
 var size = element.getSize();
 button.style.width = (size.width).toString() + "px";
 button.style.height = (size.height).toString() + "px";
 }
 var style = this.getPropertyValue("style");
 this.applyStyle(style, button);

 if (this.getPropertyValue("sizeToField")) {
 this.buttonElem.style.width = "100%";
 this.buttonElem.style.height = "100%";
 }
 },

 destroy: function(element, elementContainer)
 {
 this.buttonElem.onclick = null;
 this.buttonElem.sendKey = null;
 this.buttonElem = null;
 delete this.buttonElem;

 element.removeListener("AddedToDOM", this._handleAddedToDOM);
 delete this._element;
 delete this._elementContainer;
 },

 _handleAddedToDOM: function(event)
 {
 /* TS2 sizing */
 /* To improve rendering performance, The TS2 engine doesn't add a field to the */
 /* DOM until all the extensions have been rendered. Elements do not have */
 /* dimensions until they are added to the DOM so we use this event to do */

eXtensions Tutorial 9 – Creating your own eXtensions - Page 202 of 407

 /* anything that requires knowledge of the size of things. */
 /* For best rendering performance, avoid using this unless absolutely necessary. */

 /* we have to refer to the element and the button via "this" */

 var size = this._element.getSize();
 this.buttonElem.style.width = (size.width).toString() + "px";
 this.buttonElem.style.height = (size.height).toString() + "px" ;

 },

 _onClick: function(button)
 {
 var env = { defaultKey : button.sendKey };
 this.raiseEvent("onClick", env);

 }

 };

 AXES.Extensions.add(definition);
}

DEFINE_EXTENSION_SimplePushButton ()

eXtensions Tutorial 9 – Creating your own eXtensions - Page 203 of 407

Testing the Extension
To test your new extension copy Extension_SimplePushButton.js and add it to your project folder
(\ts\screens\<<your folder>>) or if you do not have one, to the \ts\screens folder. See The program
development lifecycle.

Use the WRKLNK command in your IBM i to ensure that the file only has *PUBLIC *R authorities.

Start aXes as a developer.

Start customizing a screen and add a new element.

Verify that the Simple Push Button extension is present in aXes Designer.

Select the Simple Push Button extension.

Size and position the button, then save your customized screen.

Test that clicking the button sends the Enter key.

The program development lifecycle

Develop / Test

During the extension's develop / test phase, you should put your new extension in your project folder. This is
found on the server, under

\\<<your axes installation name (typically axes)>>\ts\screens\<<your folder>>

If you don't yet have a project folder, you can sign on as a developer and create one from the projects home
page:

eXtensions Tutorial 9 – Creating your own eXtensions - Page 204 of 407

By keeping your work in this folder, any mistakes you make will not impact on other developers or users.

Tested

When your extension is tested, if you want to make it available to users and other developers, you can
promote your extension file to the screens folder:

\\<<your axes installation name (typically axes)>>\ts\screens

and delete it from your project folder.

(if you want the extension to be available only for your project you can leave it in the project directory and not
promote it to the screens folder)

Deploy

To deploy your extension to another site, you just need to ensure that the Extension_XXXX.js file is moved into
the screens folder in the target axes installation.

See Extension_Tutorial 9 for detailed instructions of how to create a complete deployment package which will
include your new extension.

eXtensions Tutorial 9 – Creating your own eXtensions - Page 205 of 407

The extension checklist

Check/Consideration Okay

The main wrapper function is named DEFINE_EXTENSION_XXEEEEEEEEEEE
(where XX is NOT ax AX aX or Ax)

The EEEEEEEEEEE portion of the name uses upper and lowercase

The properties section identifies the name, group, type, display and subType properties of
the extension

There are standard published methods init, render and destroy

All unpublished (private) functions are prefixed with _

There is a call to DEFINE_EXTENSION_XXEEEEEEEEEEE();

Properties

• All published properties have a description property that refers to an appropriate
long description (used as a tooltip) for the property

• All published properties are named in camel case

• All unpublished (private) properties are prefixed _

The destroy method

• Nullifies all references kept in private properties, e.g. this._myProperty

• Destroys all arrays

• Nullifies all references kept in HTML elements (very important to prevent leakage)

• Unattaches all events previously attached

The render method

• All UI visualization logic is placed in render method so it correctly responds to
property changes made at design time

• Design mode awareness exists in logic, especially UI event handling

• Visualization logic can handle the change of associated field content coming from
places other than UI (eg: another script changes field content associated with a
checkbox, checkbox should change)

Tracing

• Tracing has been added to complex or error prone areas via AXES.Trace.Output()
functions

• Tracing has not been added for basic execution of init, render or destroy routines
- this is done automatically by the environment

eXtensions Tutorial 9 – Creating your own eXtensions - Page 206 of 407

Tab positioning logic has been added in Init

Tested in these situations:

 Normal field – alpha input

 Normal field – alpha output

 Normal field – numeric input

 Normal field – numeric output

 Subfile field – alpha input

 Subfile field – alpha output

 Subfile field – numeric input

 Subfile field – numeric output

 New screen element

 Multiple usage on same 5250 screen

 Multiple usage on multiple 5250 screens

Promoted to Screens folder

Standard documentation sheet produced

Questions?
If you have any questions about creating an extension, please contact your product vendor or aXes Support.

eXtensions Tutorial 10 - Deployment

This document describes how you move files from your development system to your target system and how
you provide your end-users access to the application (URL or icon).

Assumptions
 That deployment using these instructions is to a complete and operational production aXes system of

the correct version and that no aXes screen development of any kind will be carried out with the
deployed definition set.

 That at least Tutorials 0 through to 3 have been completed.

 That you have carefully considered how to Establish the Deployment Model as described in Tutorial 7
Best Practices.

 That in addition to the modified files listed in the Files that need to be Deployed section, all
required unmodified files as outlined in Tutorial 0 - Getting Started are also deployed to the target
application folder.

Documentation Library

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 208 of 407
407

Deployment of Files to the Target Application Folder
To deploy all required files from an aXes development project follow these steps:

Deployment Step Okay

On the target system, create an application folder as a subfolder of the \axes\ts\screens folder using the
ibm i CRTDIR command.

For example to create folder MyApplication1 in \axes\ts\screens\ folder:

CRTDIR DIR('axes\ts\screens\myapplication1')

The name for this folder:

 Should not contain blanks.
 Should contain only letters from the English alphabet or numbers.
 Is referred to as your application's Definition Set.

Remember, like aXes development projects, aXes deployed applications are discrete and indivisible:

 merge definition sets together.
 copy a definition set into another definition set.
 split a definition set up into other definition sets.

It is normal to have multiple users using the same definition set.

Use the IBM i WRKLNK command and make sure that folder MyApplication1 has *R rights for user *PUBLIC
and no other rights.

For example: Use WRKLNK OBJ('axes\ts\screens\ MyApplication1') then use option 9=Work with authority
to display and alter the authority to folder MyApplication1. It should look like this when displayed by the
WRKLNK command:

Check that any static or dynamic table definitions used for testing have been removed from the respective
definition files, Tables_Static.txt and Tables_Dynamic.txt.

These would typically be unused in the application now - and may fail if they are deployed to a production
environment.

Check that the user the aXes server is executing under has READ authorisation to any required
SQL/database tables.

SQL commands may be used to load static or dynamic tables in your application.
The commands execute under the user profile that the aXes server is executing under.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 209 of 407
407

You should authorise that user profile for read access to the SQL tables required for this purpose. This user
does not need any rights to other data base tables that may be on the system.

Next, copy the files listed in the Files That Need to be Deployed section from your project folder to the
application folder on the target system.

Use the IBM i CPY commands and/or save/restore commands (using Windows copy commands can cause
code page errors). You need to save the files to a save file and move the save file onto a PC to move it and
then restore it to the target iSeries.

For example this command saves the contents of the /axes directory to a save file:
 SAV DEV('/qsys.lib/savefilelib.lib/saveFile.file') OBJ(('/axes'))

This command saves the contents of /axes and /axesdemo directory:
 SAV DEV('/qsys.lib/savefilelib.lib/saveFile.file') OBJ(('/axes')
('/axesdemo')) -

To restore the save file:
 RST DEV('/qsys.lib/savefilelib.lib/saveFile.file') OBJ(('/axes'))

CPY examples:
 CPY OBJ('/axesbuild/build/110/default_FCGI.conf') TODIR(/TGT_PATH)
 CPY OBJ(/WRKPATH/*) TODIR(/TOPATH) SUBTREE(*ALL) REPLACE(*YES)
OWNER(*KEEP)

Finally, copy the application launch page, /axes/index.html, and the icon used in the browser and on
desktops, /axes/favicon.ico, to the corresponding folder in the target aXes instance if these files have
been customized. Note that this step is only required when deploying to a different aXes instance.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 210 of 407
407

Files That Need to be Deployed
The following files need to be copied from the aXes development project folder to the application folder on the
target aXes server. Some of these may not exist in the project folder.

 application_definition.css (plus application_definition_*.css)
 application_definition.js
 Extension_*.js
 screen_*.js
 screens.jsn
 Tables_Static.txt (see note 3)
 Tables_Dynamic.txt (see note 3)
 Userenv.js
 *.xml

NOTES:

o The *.scn files and the count.txt file do not need to be deployed from the development
project folder into PRODUCTION application folders because these files are amalgamated
into the screens.jsn file. No aXes screen development can be carried out within
production application folders because the absence of *.scr files will cause all
previously deployed screen definitions to be lost.

If the application is to be displayed in a language other than English the modified text files,
Texts_Cust_*.txt also need to be copied. See the Application Internationalization section for
the location of these files and additional deployment steps. Note that if you change a
Texts_Cust_ll.txt file you should clear your browser cache to pick up the new file version.

o If you have used additional static or dynamic table definition files - deploy these files as well.
If you have changed the names of these files - deploy the renamed files instead.

aXes eXtension Files
When aXes starts up, eXtensions are loaded from the axes\ts\screens folder first. Then eXtensions are loaded
from the application definition set if present.

This means that the following extra steps need to be taken for deployment of aXes eXtensions:

Check Okay
aXes eXtensions that are specific for this application only are to be copied to the
application folder (as previously described).

aXes eXtensions that are to be used by all applications on this system are to be copied
from the axes/ts/screens folder of the development system to the axes/ts/screens folder
of this system.

NOTE: If the same eXtension exists in the screens folder and the application folder, the
eXtension in the application folder should take precedence. However, this cannot be
guaranteed and you should check which version is being used.

Starting aXes on the Target System
You will remember from a previous tutorial that to start aXes to access applications without eXtensions, you
use a URL of the following format to get you to your Server:

http://<aXes_Host>:<aXes_Port_Number>/ts/skins/ts_basic.html

Replacing
<aXes_Host> with the Host Name of your aXes Server
<aXes_Port_Number> with the Port Number required to access your aXes Server

Using aXes to access an application on your Server that has been modernized with aXes eXtensions, you use a
URL with a different format:

http://<aXes_Host>:<aXes_Port_Number>/ts/skins/ts_basic.html?definitionset=<Application_folde
r>&lang=<LL>

Replacing
<aXes_Host> with the Host Name or IP Address of your aXes Server
<aXes_Port_Number> with the Port Number required to access your aXes Server

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 211 of 407
407

<application_folder> with the name of the folder that contains your application’s Definition Set (see later)
<LL> with the appropriate language code from the Language Codes table. If not specified it will default to the
Windows default language on the PC.

Note that when you start aXes using ts_basic.html, you are starting an aXes-TS 5250 terminal session without
access to the aXes-WS Web Spooler capability.

To start a full aXes-TS terminal session which allows the viewing of spool files as HTML, PDF, XML or Text
documents, start aXes using ts.html:

http://<aXes_Host>:<aXes_Port_Number>/ts/skins/ts.html?definitionset=<Application_folder>&lan
g=<LL>

The above URL applies to the aXes-TS engine. If you are using the aXes-TS2 engine, the url is:

http://<axes_host>>:<aXes_Port_Number>/ts/ts2/index.html?definitionSet=<Application_folder>&l
ang=<LL>

When the deployed application is to be used in IE, you can choose whether to use the aXes-TS or the aXes-TS2
engine. However, if your end-users' browser is Firefox, Google Chrome or Safari you must use the aXes-TS2
engine.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 212 of 407
407

Put a Start Icon on End User Desktops
As a convenient way to start the completed aXes application you can provide a start icon for the end user's
desk top. The shortcut doesn't need to be created from scratch: it can simply be emailed to the user and
dragged on to the user's desktop.

Ensure that the shortcut location correctly refers to the deployed application folder.

Don’t forget that the format of the URL required to access the application that you have modernized with aXes
eXtensions is:

http://<aXes_Host>:<aXes_Port_Number>/ts/skins/ts_basic.html?definitionset=<Application_folde
r>&lang=<LL>

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 213 of 407
407

URL Parameters
You can specify parameters such as the user id and the device in the aXes URL:

Parameter Description Applicable to
TS2 only

curlib IBM i library
definitionset The name of the folder that contains your application’s

definition set.

dev Turns on developer mode. Currently developer mode
supports defining screen ids and changing AutoGUI settings.

Extension design must be done in TS1.

Yes

device Device to connect to
lang The appropriate language code from the Language Codes

table. If not specified it will default to the Windows default
language on the PC.

menu Initial IBM i menu
noexpires By default, all files loaded by aXes (that are not expected to

change) are cached by the browser to make future loads
faster. Adding the noexpires parameter tells aXes not to do
this (can be useful during development).

This affects long-term caching by controlling whether the
server sets an "expires" header on the files it
sends. Browsers may do some internal session level caching
of their own that may still result in changes not being
loaded. Even clearing the cache may not fix this (Google
Chrome). Quitting and re-launching the browser usually will.

popups This parameter can have one of these values:

0 – Off all enhanced window handling.
1 – Turns on the detection of degraded DDS windows only.
2 – Turns on the “keep the previous screen background”
behaviour only.
3 – Turns on both.

From version 2.11 onwards, 3 is the default value used if
this parameter is omitted.

See PopUp Windows and Screen Rendering in aXes-TS2.

Yes

Program Initial IBM i program
pwd Password. For security reasons you need to consider

carefully whether you want to expose a password in a url.

reconnect Reconnect to a previously disconnected session. Can be true
or false.

screentype IBM API screen type identifier
signon Automatically sign on. Can be true or false.
trace Turn on tracing and set the level. Valid values are:

s/sys/system
u/user/app/application
1/y/a/all/true

user Specifies and prefills the user profile to be used in the aXes
logon dialog. If the user and password are both specified
then the log on is performed automatically.

This URL assigns user, password, device and auto-signon:
http://<aXes_Host>:<aXes_Port_Number>/ts/skins/ts.html?device=ARB&user=alick&pwd=XXXX&signon=true

The URL parameters correspond to the options you can specify when logging on to aXes:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 214 of 407
407

Note that the LUA tslogonexit.lua on the server controls whether client overrides are allowed. If the LUA
variable allowClientOverride is set to False, the URL parameters are ignored.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 215 of 407
407

Tracing Your Application

If you have a problem with a deployed application, you may want to trace it by adding the Trace parameter to
the URL. For example:

http://lxsteam:8080/ts/skins/ts_basic.html?definitionset=myfolder&trace=all

Possible values of the trace parameter are:

ALL Displays both system trace messages and application trace messages.
SYS Displays only system trace messages
APP Displays only application trace messages
NO No trace messages are displayed. You can use this value by default to make it

quick to turn on tracing:

http://lxsteam:8080/ts/skins/ts_basic.html?definitionset=myfolder&trace=no

System trace messages are those that are outputted by aXes core system.

Application trace messages are generated for eXtensions when TRACE commands are encountered in aXes
code:

TRACE("The value in the job title field is: ", value, " more text ", " and more text");

To trace aXes outside extensions use AXES.Trace. For example:

AXES.Trace.output(“This is an application trace”);

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 216 of 407
407

Application Internationalization
During the development of an aXes project designed to be executed in languages other than English, any
customer visible text must be defined into the aXes TEXT object.

Note that if you change a Texts_Cust_ll.txt file you should clear your browser cache to pick up the new file
version.

Follow these steps as a guide to application internationalization:

Internationalization Step Okay

All application text that is to be visible to the end user is defined in the file
Texts_Cust_en.txt using the prescribed "key" : "text" format.

Note that if you change a Texts_Cust_ll.txt file you should clear your browser cache to
pick up the new file version.

NOTE: See Tutorial 3 for an example of this technique.

All application text that is to be visible to the end user is displayed using the TEXT object.

For example

CTEXT("<text key>")

Where <text key> is substituted with the key of the required text in the
Texts_Cust_en.txt file

The Texts_Cust_en.txt file is translated in the required language and the translations are
stored in a file named Texts_Cust_LL.txt where LL is substituted with the appropriate
language code from the table in the Language Codes section.

The file Texts_Cust_en.txt plus any translated versions of this file, e.g. Texts_Cust_fr.txt
for French translations, need to be copied from the \axes\ts\lang folder on the
development system to the corresponding folder of the target system.

Include the appropriate language code in the start icon for the end-user’s desktop or any
aXes URL used to start the application.

For example:

http://<aXes_Host>:<aXes_Port_Number>/ts/skins/ts_basic.html?definitionset=<
Application_folder>&lang=<LL>

Replacing
<aXes_Host> with the Host Name or IP Address of your aXes Server
<aXes_Port_Number> with the Port Number required to access your aXes Server
<application_folder> with the name of the folder that contains your application’s
Definition Set
<LL> with the appropriate language code from the Language Codes table. If not specified
it will default to the Windows default language on the PC.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 217 of 407
407

Language Codes
The following is a list of language codes to be used with internationalised applications. They are
always lowercase:

af Afrikaans sq Albanian

ar-sa Arabic (Saudi Arabia) ar-iq Arabic (Iraq)

ar-eg Arabic (Egypt) ar-ly Arabic (Libya)

ar-dz Arabic (Algeria) ar-ma Arabic (Morocco)

ar-tn Arabic (Tunisia) ar-om Arabic (Oman)

ar-ye Arabic (Yemen) ar-sy Arabic (Syria)

ar-jo Arabic (Jordan) ar-lb Arabic (Lebanon)

ar-kw Arabic (Kuwait) ar-ae Arabic (U.A.E.)

ar-bh Arabic (Bahrain) ar-qa Arabic (Qatar)

eu Basque bg Bulgarian

be Belarusian ca Catalan

zh-tw Chinese (Taiwan) zh-cn Chinese (PRC)

zh-hk Chinese (Hong Kong SAR) zh-sg Chinese (Singapore)

hr Croatian cs Czech

da Danish nl Dutch (Standard)

nl-be Dutch (Belgium) en English

en-us English (United States) en-gb English (United Kingdom)

en-au English (Australia) en-ca English (Canada)

en-nz English (New Zealand) en-ie English (Ireland)

en-za English (South Africa) en-jm English (Jamaica)

en English (Caribbean) en-bz English (Belize)

en-tt English (Trinidad) et Estonian

fo Faeroese fa Farsi

fi Finnish fr French (Standard)

fr-be French (Belgium) fr-ca French (Canada)

fr-ch French (Switzerland) fr-lu French (Luxembourg)

gd Gaelic (Scotland) gd-ie Gaelic (Ireland)

de German (Standard) de-ch German (Switzerland)

de-at German (Austria) de-lu German (Luxembourg)

de-li German (Liechtenstein) el Greek

he Hebrew hi Hindi

hu Hungarian is Icelandic

id Indonesian it Italian (Standard)

it-ch Italian (Switzerland) ja Japanese

ko Korean ko Korean (Johab)

lv Latvian lt Lithuanian

Macedonian (FYROM) ms Malaysian

mt Maltese no Norwegian (Bokmal)

no Norwegian (Nynorsk) pl Polish

pt-br Portuguese (Brazil) pt Portuguese (Portugal)

rm Rhaeto-Romanic ro Romanian

ro-mo Romanian (Moldavia) ru Russian

ru-mo Russian (Moldavia) sz Sami (Lappish)

sr Serbian (Cyrillic) sr Serbian (Latin)

sk Slovak sl Slovenian

sb Sorbian es Spanish (Spain ? Traditional)

es-mx Spanish (Mexico) es Spanish (Spain ? Modern)

es-gt Spanish (Guatemala) es-cr Spanish (Costa Rica)

es-pa Spanish (Panama) es-do Spanish (Dominican Republic)

es-ve Spanish (Venezuela) es-co Spanish (Colombia)

es-pe Spanish (Peru) es-ar Spanish (Argentina)

es-ec Spanish (Ecuador) es-cl Spanish (Chile)

es-uy Spanish (Uruguay) es-py Spanish (Paraguay)

es-bo Spanish (Bolivia) es-sv Spanish (El Salvador)

es-hn Spanish (Honduras) es-ni Spanish (Nicaragua)

es-pr Spanish (Puerto Rico) sx Sutu

sv Swedish sv-fi Swedish (Finland)

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 10 - Deployment, Page 218 of 407
407

th Thai ts Tsonga

tn Tswana tr Turkish

uk Ukrainian ur Urdu

ve Venda vi Vietnamese

xh Xhosa ji Yiddish

zu Zulu

eXtensions Tutorial 11 - 5250 Screen Styling

The Shipped 5250 Basic Themes and Customized Styles
aXes ships with a set of basic 5250 themes. These are accessible from the aXes menu:

Once you start to customize an application you should stop using the basic 5250 themes and develop your
own customized role based styles and themes. Tutorial 3 introduced this concept. The following tutorial covers
it in much more depth.

Initially some of this material may seem complex to you. However the time you invest in understanding it will
greatly improve the final appearance of your application.

Using Role Based Styles
By now you should have encountered the concept of using role based styles for screen elements.

This means you might create a style called Instruction that uses the Verdana font, in blue, using 10 pt italics.

On customized 5250 screens, rather than specify style elements over and over for screen instructions, you
simply associated the style Instruction with the screen instructions.

The role based approach is faster, more accurate and much easier to change than applying individual style
elements to the screen fields.

Here's a list of some of the common roles that information on a 5250 screen has:

Panel Identifier
Panel Title
Instruction
Field Label
Field Column Heading
Group Heading
Normal Text
Emphasised Text
Input field – Normal
Input Field – Emphasised
Output field – Normal
Output field - Emphasised
Scrolling Information
Separator
Function Key
Error Message

This basic list of screen element roles is traceable right back to the IBM CUA (Common User Access) standards
developed in the late 1980s. Role based styling is not a new idea.

Do not have too many styles
You may end up with 10, 20 or even 30 individual role based styles.

Documentation Library

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 220 of 407

If you have more than 30, you may be misinterpreting how to use them.

Using Themes
A further refinement of the style approach is to define overarching themes for your whole application.

Themes are just names, and typically they reflect an overall theme or style of appearance across a whole
application.

You might dream up exotic theme names like Midnight, Sunset and Moonlight, but commonly designers use
themes that are influenced by Microsoft - like their Blue, Silver and Olive themes. First introduced with
Windows XP these themes are known to millions of people throughout the world.

In this example we are going to use 4 themes:

Blue
Silver
Olive
Graphite

Usually the first thing you want to associate with a theme is a primary background color - so here is what we
are going to use in this example:

Blue #A9CAF7

Silver #E7E8EB

Olive #CDDCC5

Graphite #B8BABE

In the application properties you would then define 4 basic styles like this (In ts2, name should be unique):

Name styleFor htmlTag Style Theme
BasicWindowBackgroundBlue Application

Window
 Background-color:

#A9CAF7
Blue

BasicWindowBackgroundSilver Application
Window

 Background-color:
#E7E8EB

Silver

BasicWindowBackgroundOlive Application
Window

 Background-color:
#CDDCC5

Olive

BasicWindowBackgroundGraphite Application
Window

 Background-color:
#B8BABE

Graphite

Next the basic application property defaultTheme is set to indicate the default theme is blue:

Note that the default theme is a property that can be derived from script - so you can change the
defaultTheme at application start up.

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 221 of 407

Note: If you are using aXes with RAMP-TS you would normally not bother to set up screen background
colors. RAMP-TS will set the background color of its own current theme automatically.

Dynamically Changing Themes
You can also change the theme being used dynamically.

In this example a quick pick menu extension has been added to the System i Main Menu like this:

The quick pick menu's onItemSelection property has this script:

var sTheme = "";

switch (ENV.itemNumber)
{
 case 2: sTheme = "SILVER"; break;
 case 3: sTheme = "OLIVE"; break;
 case 4: sTheme = "GRAPHITE"; break;
 default: sTheme = "BLUE"; break;
}

SETAXESTHEME(sTheme);

This script is using the function SETAXESTHEME() to alter the theme that is being used dynamically.

If you do this you will see the main system menu dynamically change color.

You can also use var sTheme = GETAXESTHEME() to find out what the current theme is in your scripts.

Note: If you are using aXes with RAMP-TS you should not dynamically change themes this way.
Instead you should follow the theme that RAMP-TS is using. It can be accessed in an eXtension script
as RAMP.GLOBAL_VL_Theme. It will contain one of strings "BLUE", "OLIVE", "SILVER" or "GRAPHITE".
Additionally the background color that RAMP-TS is using can be accessed as
RAMP.GLOBAL_HTML_BackColor which will contain a #RRGGBB style color value.

Applying Themes to Screen Elements
Next we are going to use the same approach to handle a role based screen element.

A new style named Instruction (in all 4 themes) is defined like this:

Name styleFor htmlTag Style Theme
Instruction color: red Blue
Instruction color: green Silver
Instruction color: blue Olive
Instruction color: white

font-weight: bold
Graphite

Note: These color choices are to make this example clear. They are not good choices for a real
application because they are not sympathetic to the overall theme, with the possible exception of the
Graphite one.

Next, the instruction line on the System i Main menu has the style Instruction associated with it, like this:

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 222 of 407

Now as the theme is changed by the quick pick menu, the style of the instruction line changes as well:

Blue Theme

Silver Theme

Olive Theme

Graphite Theme

Next, we are going to create a new style named Title.

This time we are going to just define these 2 entries:

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 223 of 407

Name styleFor htmlTag Style Theme
Title color: blue;

font-weight: bold;
font-style: italic;

Title color: white;
font-weight: bold;
font-style: normal;

Graphite

Title is defined once with no theme - and again, but only for the theme Graphite.

Next the style Title is associated with the title on the IBM i Main Menu.

As the 4 themes are cycled it appears as:

Blue Theme

Silver Theme

Olive Theme

Graphite Theme

Where most of the themes use the same style elements - you only need to define the styles that are different.
Here blue, silver and olive all use the Title style that has no associated theme.

Setting Styles Dynamically – Basic Concepts
The starting point for this example is the System I Main Menu, where:

 The 5250 screen is named MAIN
 The selection or command field is named CommandLine.
 Two push button eXtensions, captioned Red and Black, have been added.

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 224 of 407

The onClick property of the Red push button is set to this:

var oStyle = { "color":"yellow", "background-color":"red" };

var cmdfld= FIELDS("CommandLine");

cmdfld.setProperty("axdv.style",oStyle);

cmdfld.refresh();

The onClick property of the Black push button is set to this:

var oStyle = new Object();
oStyle["color"] = "white";
oStyle["background-color"] = "black";

var cmdfld= FIELDS("CommandLine");

cmdfld.setProperty("axdv.style",oStyle);

cmdfld.refresh();

These button click scripts first create a script object (named oStyle here) that specifies a text color and a
background color.

Next they get a reference to the field CommandLine on the screen and alter its style (in fact the style of axdv -
its default visualization).

Finally the command line field is then instructed to refresh its visualization.

If you click the Red button the command line entry field should look like this:

If you click the Black button the command line entry field should look like this:

In eXtension scripting styles are defined in JavaScript objects.

So to create a style dynamically you could code this:

var oStyle = { "color":"yellow", "background-color":"red" };

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 225 of 407

or you could code this - which may be more familiar:

var oStyle = new Object();

oStyle["color"] = "white";

oStyle["background-color"] = "black";

Note: The style element names like color and background-color that you use are identical to those you
see when you set up a style and correspond to the standard CSS style names. They are case sensitive
names.

Both these style object construction techniques are functionally identical, but the second technique generally
makes it easier to put if/else logic into the set up.

You can also mix and match the techniques like this:

var oStyle = { "background-color":"red" };

if (condition) oStyle["color"] = "white";
else oStyle["color"] = "palestraw";

Setting Styles Dynamically – Self Styling
The preceding Basic Concepts example uses two push buttons to alter the style of the command line. This is
typical of the situation where a user’s action like clicking the Save button may cause screen elements to
change their style.

Another way to style screen style elements is to let them style themselves. This is only applicable to TS 1.

Typically they do this by looking at their own content and style themselves to attract the user’s attention.

For example, a YES/NO field related to whether a customer should be extended more credit might change itself
to red when it contains NO.

Self styling can be demonstrated by altering the example started in the preceding Basic Concepts section as
follows.

First, the CommandLine field is selected, and the Style property of its Default Visualization is changed to be
evaluated by executing script:

Where the script used is like this:

/* Create a default style with a white background */

var oStyle = {"background-color":"white"};

/* See what is in this field (ie: CommandLine) */

var sValue = FIELD.getValue().toUpperCase();

/* If it contains blue or green make it the background color */

if ((sValue == "BLUE") || (sValue == "GREEN")) oStyle["background-color"] = sValue;

/* Return the style object to be used for this field (ie: CommandLine) */

ENV.returnValue = oStyle;

This change is saved and then the System I Main Menu is executed.

If you type the word green or blue into the command line and press enter (or any key that causes the screen
to be redisplayed by the server), you should see the style change like this:

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 226 of 407

Or like this:

Type anything else into the command area and the default background color of white will be used:

For TS2, since the Style property of the element does not allow script (only through list of attributes or JSON
format) to style themselves, you can put the above code in screen event like onArrive or in button’s onClick
event or any other event that must be triggered.

Setting Styles Dynamically – Using the USERENV object
The preceding Basic Concepts example used hard coded style elements for the color and background color.

By using the USERENV object you can centralize and abstract style logic.

First, edit your USERENV object.

Add the highlighted code:

var USERENV =
{

 REDStyle : { "color" : "yellow", "background-color" : "red" },
 BLACKStyle : { "color" : "white", "background-color" : "black" },

This code defines new objects USERENV.REDStyle and USERENV.BLACKStyle.

Save your USERENV object changes. Then start a new aXes developer session to make sure you pick up the
modified USERENV.JS file.

Change the onClick property of the Red push button to this:

var cmdfld= FIELDS("CommandLine");

cmdfld.setProperty("axdv.style",USERENV.REDStyle);

cmdfld.refresh();

Change the onClick property of the Black push button to this:

var cmdfld= FIELDS("CommandLine");

cmdfld.setProperty("axdv.style",USERENV.BLACKStyle);

cmdfld.refresh();

It's worth noting this about this new code:

• USERENV.REDStyle and USERENV.BLACKStyle are defined in one place. Where many scripts refer to them

this makes changing them much simpler.

• This code version is marginally more efficient. The original version had to repeatedly create style objects.

This version just refers to a pre-existing style - eliminating the cost of creating objects.

• Using style names like RED and BLACK is not recommended - but they suit the purpose of making this

example simple.

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 227 of 407

In a real application your style names should generally not reflect the physical characteristics of the style,
such as its color.

Instead they should reflect its role - like EMPHASIZED or ERROR. Using the role based approach abstracts
the definition of how an ERROR is actually visualized away from individual scripts.

• You can probably start to see how you can reduce your scripting even more by putting progressively more

compound functions into the USERENV object.

You should be able to reduce the scripting required for the Red button to a single line like this:

USERENV.setStyle("CommandLine",USERENV.REDStyle);

 And to this for the black button:

USERENV.setStyle("CommandLine",USERENV.BLACKStyle);

Setting Styles Dynamically – Using Application Styles/Themes
The preceding Basic Concepts example used hard coded style elements for the color and background color.

A better solution may be to use application level styles.

This approach also allows the styles to be dynamically themed.

If the application level styles named RedBoard and BlackBoard are defined as:

Then the code for the Red button could be changed to this better code:

var oStyle = { _base : "RedBoard" };

var cmdfld= FIELDS("CommandLine");

cmdfld.setProperty("axdv.style",oStyle);

cmdfld.refresh();

and for the black button:

var cmdfld= FIELDS("CommandLine");

cmdfld.setProperty("axdv.style", { _base : "BlackBoard" });

cmdfld.refresh();

Here the special property _base in the style object is used to specify the application level style name.

Generally using an application level style is better because it centralizes the definition of the style and it
performs slightly better.

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 228 of 407

Understanding Screen Sizing and the Thin Red Line
aXes is designed to display 5250 screens, which are typically 24x80 or 27x132 lines of characters/columns. By
default aXes will display an area that represents this type of screen size (also see the next section about row /
column size to understand how the default 5250 screen size is calculated).

When enhancing screens you can create more screen space - but before doing this it is best to understand how
the screen sizing process works.

Display the System i Main Menu (named MAIN).

Set the aXes zoom factor to 100% using the drop-down in the right top corner of the screen.

Stretch the browser window out so that what you are seeing is much larger than the 5250 screen display area.

Put the screen in edit mode by clicking on Lock Screen icon.

Initially the area inside the thin red line represents the "5250 size" of this screen.
In TS2, you can no longer position the elements beyond the thin red line.

However, you can make more space on enhanced 5250 screens.

Select the Auto Zoom Screen Size extension from Extension Toolbox then drag and drop it on to the screen
panel.

Then the screen customization window will now look like this:

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 229 of 407

The width and height properties of the Auto Zoom Screen Size extension allow you to specify the logical
dimensions of this enhanced screen. In effect these properties allow you to move the thin red line boundary.

Specify width and height properties, something like this:

Note: These values are logical sizes, in pixels. It does not mean you have to have a screen that wide or high to
display the screen. The auto zoom feature will zoom your screen in or out to fit the available browser display
space at any time, no matter how large or how small it is. Refer to Screen Size documentation for the
description of other properties such as zoom and lock zoom.

You should be able to move the boundaries out, something like this:

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 230 of 407

Save your screen changes.

Navigate off this screen and back again to make sure the sizing information is reset, properly.

Now start changing the screen zoom setting again.

You should also try logging on to aXes as a user and checking your screen there when using various zoom
sizes.

You should find that your "big" 5250 screen is correctly visible at all zoom sizes, particularly the Auto and Fit
sizes.

There are some important things to note:

1. Do not make the boundaries smaller than the 5250 screen default size. This is not supported in any form.

Note that the 5250 screen boundaries will depend on whether the 5250 displayed screen is 24x80 or
27x132.

2. You can make your screen very wide and very high, but as you do this the real 5250 screen area will

proportionally shrink. If it shrinks too much users may not be able to read it and the screen caret may
stop displaying correctly.

3. Try to avoid a plethora of different "big" screen sizes. Decide on a single "big" screen size, or on a small

standard set of them. Use them selectively.

A simple way to do this is to change the defaults for the Auto Screen Size's height and width properties.
Then all a developer needs to do is check the Auto Screen Size eXtension to get the correct default "big"
screen size.

Alternatively, the Auto Zoom Screen Size property values could be set by invoking a USERENV function
like USERENV.iscreenHeight("medium"), USERENV.iscreenHeight("large") and
USERENV.iscreenHeight("xlarge"). This would allow 3 "big" screen sizes to be centrally defined.

Using wide screens (132 x 27)
When you have 5250 wide screens you should design and execute your applications in wide screen mode.

In effect, any 24x80 mode of operation that your application may support would no longer be used when it is
displayed by aXes.

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 231 of 407

Using Extended/Enhanced 5250 DDS attributes
5250 DDS sometimes contain extended/enhanced DDS attributes to display fields as radio buttons, drop
downs, etc in the limited range of products that support the options.

aXes supports these extended/enhanced DDS options - but you should not add eXtensions to such screens as
the GUI capabilities are different and contradictory.

Leave the screens to be displayed natively by aXes, but do not add eXtensions to them.

Changing 5250 Row / Column Size
By default rows in AXES 5250 screens will be 15 pixel high and columns will be 8 pixel wide.

If for some reason you decided to use larger font and changed the global style font to Verdana, 12pt, your
screen will look similar to the one below:

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 232 of 407

Reminder: you need to set the useTerminalStyles property of this screen to false to allow custom styles to
take effect.

You can see in the screenshot above that the edit boxes adjust according to the specified font size.
Use an application-level eXtension Terminal Settings to allow you to easily change the default height of rows
in 5250 screens.

Follow these steps to use this eXtension:

• Go to the aXes Developer window.
• Lock the screen to switch to edit mode.
• Select Application from the Extendable Objects dropdown to view the Application Properties.

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 233 of 407

• Even if you have never customized a screen before, the Application Terminal Settings eXtension is already
included in the Application Properties.

The value of the Terminal Settings properties in the property sheet is default.

<< TODO Update this part!>>

Set the rowHeight to 25 and spaceBetweenRows to 5. Save the settings (click the Save button at the
top of the window). You will see your screen changes immediately to the one below:

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 234 of 407

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 235 of 407

About Fonts and Font Sizes
We recommend that you do not change fonts or font sizes via shipped style sheets or use
customized style sheets to change fonts or font sizes.

If you change a style sheet you may need to clear your browser cache to get the changes.

We also recommend that you do not use variable width fonts on un-customized screens because
somewhere down the track you will encounter a problem on a screen with subfile content or
headings that appear to become misaligned.

 In Arial, compare the widths:
WWWWW
IIIII

The string of W's is almost 3 times as wide as the I's.

 In Lucida Console, compare the widths:
WWWWW
IIIII

They are the same width.
This is the essence of the variable width/pitch font problem.

 If an RPG program puts out these subfile headings as a single text output field:
 Customer Product Order Quantity Value
 18181818 6373737 8484848 700 1,234.56
 18181818 6373737 8484848 700 1,234.56
You may end up with a display like this, when using a variable width font:
 Customer Product Order Quantity Value
 18181818 6373737 8484848 700 1,234.56
 18181818 6373737 8484848 700 1,234.56
There is no resolution here. The 5250 DDS output strings …
'Customer Product Order Quantity Value' (in Lucida Console)
'Customer Product Order Quantity Value' (in Arial)
are exactly the same length – they simply have different display lengths.
If the program also outputs the subfile data columns as one long field instead of as individual
fields (as some do) then the problem is even more exacerbated:

 Customer Product Order Quantity Value
 1123 BOLTS 8484848 3 4.56
 1123 NUTS 8484848 700 1,234.56
 1123 HAMMER 8272 2000 11,234.56
 Customer Product Order Quantity Value
 1123 BOLTS 8484848 3 4.56
 1123 NUTS 8484848 700 1,234.56
 1123 HAMMER 8272 2000 11,234.56

 To change fonts or font sizes use the application definition eXtension. See Tutorial 3 –
Setting up your Styles and also Tutorial 10 – 5250 screen styling. Changes you make
to fonts and font sizes here may be applied to customized and non-customized
screens.

 A 5250 screen is inherently a fixed width device which uses fixed width characters. A

5250 screen has 24 x 80 or 27 x 132 fixed width and height cells that may contain a
character. Starting to use variable width characters in this model is always
problematic and needs to be treated with care. aXes uses specific dimensions that
indicate how wide and high a 5250 screen "cell" is when it has to perform screen
layout calculations.

 <<TODO Edit – waiting for confirmation>>If you use a large font, or a font that is wider,
you may need to adjust these cell sizes. This is done here:

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 236 of 407

If you change these values you need to check several customized and un-customized 5250 screens to
see what impact your changes have made and how they operate in conjunction with your font and
font size.

 These cell size changes impact customized and non-customized screens. You should set
your font and font size early and adjust the screen cell sizes accordingly. Changes
made to these values when a project is in progress can impact the layout of screens
already customized.

5250 Attributes Bytes
The color and visual characteristics of fields on 5250 screens are controlled by attribute bytes. In a 5250 data
stream the attribute byte (8 bits) precedes the field on the 5250 screen. An attribute byte will have one of
these hexadecimal values:

 x20 Green
 x21 Green/Reverse Image
 x22 White
 x23 White/Reverse Image
 x24 Green/Underscore
 x25 Green/Underscore/Reverse Image
 x26 White/Underscore
 x27 Nondisplay
 x28 Red
 x29 Red/Reverse Image
 x2A Red/Blink
 x2B Red/Reverse Image/Blink
 x2C Red/Underscore
 x2D Red/Underscore/Reverse Image
 x2E Red/Underscore/Blink
 x2F Nondisplay
 x30 Turquoise/Column Separators
 x31 Turquoise/Column Separators/Reverse Image
 x32 Yellow/Column Separators
 x33 Yellow/Column Separators/Reverse Image
 x34 Turquoise/Underscore
 x35 Turquoise/Underscore/Reverse Image
 x36 Yellow/Underscore
 x37 Nondisplay
 x38 Pink
 x39 Pink/Reverse Image
 x3A Blue
 x3B Blue/Reverse Image
 x3C Pink/Underscore
 x3D Pink/Underscore/Reverse Image
 x3E Blue/Underscore
 x3F Nondisplay

When you use display file DDS keywords like underline - DSPATR(UL), reverse video - DSPATR(RI), or blue -
COLOR(BLU) - you are telling the DDS display file compiler what attribute byte to put in front of the field on
the 5250 screen.

5250 Attributes Bytes on Un-Customized 5250 screens

Note: This material applies to aXes-TS only.

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 237 of 407

When you display an un-customized screen the 5250 attribute bytes are mapped to web page characteristics
by using a cascading style sheet, defined in a CSS document.

There is a cascading style sheet for each aXes theme.

For example - if you open axes\ts\skins\axes_blue.css with NOTEPAD you will see the style sheet used for the
aXes blue theme.

If you search for X28 (the attribute byte for color RED) you will find the style details that define how a 5250
screen field with a X28 attribute byte is to be displayed by the web browser:

.x28, .Infield .x28
{
 color: #cc0000 ;
}

This CSS definition says that the browser color #CC0000 should be used for text in this field.

Note: Detailing the complete use of low level CSS attributes is beyond the scope of this tutorial.
Extensive information is available from the W3C Schools link on the aXes Projects Home page.

The key things to understand about uncustomized screens and 5250 attribute bytes are:

• Web browsers have no implicit understanding of 5250 attribute byte X28. What actually happens is that

attribute byte X28 is mapped to a style that specifies the web browser characteristics to be used.

• 5250 colors are quite stark. Often the style sheets are used to map them to softer colors since the web

browser has many more color possibilities.

• Sometimes several 5250 colors are mapped to the same web color. For example, the 5250 colors blue and
green may both map to web color black – often because it is unusual to find basic Windows GUI forms that
make use of multi-colored text lines in the same way that 5250 screens do.

• If you change an aXes shipped style sheet (CSS document) you should back up and also version your

changes so that you can back out unwanted changes and won’t lose your changes when they are
overwritten in an aXes upgrade.

5250 Attributes Bytes on Customized 5250 screens

When you customize a 5250 screen the CSS style sheets mentioned in the preceding section are normally not
applied to the screen.

By customizing a screen you are indicating your intention to make it into a Windows style GUI form - often
quite different to the original 5250 screen – so basic 5250 attribute bytes do not and cannot be applied in the
same way.

The appearance of a customized screen is controlled purely by styles. Generally the use of styles and themes
has many advantages over using 5250 attribute bytes.

However - for customized screens it is still possible to supply an attribute byte to style mapping - which will be
automatically applied when it is possible to do so.

The process for doing this goes like this:

 You define a normal eXtension style (as described in the preceding section).

 You use the for5250Attributes property of the eXtension style to associate the style with one or more

5250 attribute bytes - in either an input and/or output field context.

 When a 5250 field is presented on a customized form its attribute byte is used to decide whether an

eXtension style should be automatically applied.

There are some key things to know about this process:

1. The automatic application of a default style only makes sense when the 5250 field is still visualized like a

5250 field. Applying the style to a field that is visualized as something very different (eg: a drop down,
radio buttons, a push button) is not possible.

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 238 of 407

2. When a brand new element is added to a customized 5250 screen it has no 5250 attribute byte – so it is

not possible to apply a style automatically. However - you can specify the style yourself, reusing one of
the 5250 ones if you like.

3. You can theme these styles just like any other style. So 5250 attribute COLOR(GRN) may automatically be

interpreted differently if you are using a theme of blue or olive (say).

One of the key uses of this 5250 attribute mapping feature is in the handling of DSPATR(RI) – reverse video –
which is often used to indicate an error state for a 5250 field.

Note: There is no such thing as an “error state” for a 5250 field. By convention many sites use
DSPATR(RI) - but some sites alter a field’s color instead.

Here is an example of using this 5250 attribute byte mapping feature to handle DSPATR(RI) for error displays:

1. Open the styles property of the application:

2. Create a style called ErrorHighlighting as shown:

3. Click on the for5250Attributes property.

Add an item. Make it display attribute 25 - for an input field

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 239 of 407

(x25i - Input - Green/Underscore/Reverse Image)

This display attribute is commonly used by applications to indicate that a field is in error

4. Exit the style properties and save Application properties. You are now ready to test your change.

5. If you run the Axes demo program using commands ADDLIBLE AXESDEMO and then CALL XHRRPGTRN.

Select an employee, and edit their details, blank out the surname and press enter, you should see the field in
error highlighted in red.

Now trying editing the ErrorHighlighting style.

Change the background color to Yellow an save your changes.

Restart the 5250 application again.

The background color should have changed from Red to Yellow.

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 240 of 407

Copy the Shipped Logon On Screen to Make your own Version
In the aXes ts/ts2 folder locate the files login.html and login.css. Copy them to produce custom login files
named MyTest_login.html and MyTest_login.css (say) in the same folder. Note: it is important that the left
hand part of the name (before the extension) is the same for both files. Using the IBM i WRKLNK command
check that user *PUBLIC has *R rights only to the new files.

Set Up a Desktop Short Cut to Test Your Custom Sign On Screen
Set up a desktop short cut or browser bookmark to test your custom logon. The URL it uses should be like this:

http://<aXesHost>:<aXesPort>/ts/ts2/index.html?login=mytest_login

This will start an aXes terminal session using your custom log in screen instead of the standard shipped one.
Test your shortcut. The result should look like this (ie: exactly like the shipped log on):

Have a quick look at the structure of MyTest_Login.html
Open your MyTest_Login.html document with a source editor, for example NOTEPAD.

The important thing to note about this file which is different from most other HTML files you will see is that its
<head> section is empty. This file is loaded by aXes and its <body> is inserted into the existing HTML
document. When doing this, some browsers will ignore the content of the <head> section. Others will attempt
to process it in inconsistent ways. So, for a good cross-browser experience, leave the <head> section empty.

The first thing you will see is a <script> section containing some JavaScript. This JavaScript hooks up the fields
in the HTML with the corresponding fields in the aXes virtual terminal and provides various other user interface
functionality. Getting into the details of what is going on here is beyond the scope of this tutorial.

The <script> is then followed by the HTML required to build the logon page. The part that is of interest to us
are the first few lines:

<div id="loginPage">

<div id="loginLogo">
 <div id="loginTitleText" ax_txtscope="core" ax_txt="Terminal Session"></div>
</div>

Now have a look at MyTest_Login.css to see how these elements have been styled:
#loginPage {
 width:100%;
 height: 100%;
 position: absolute;
 top: 0px;
 left: 0px;
 background: transparent url(css/images/axnewheaderbg.jpg) repeat-x left top;

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 241 of 407

}
#loginLogo {
 margin-bottom: 70px;
 display: block;
 height: 115px;
 background: transparent url(css/images/axnewheader.jpg) no-repeat left top;
 text-align: right;
}
#loginTitleText {
 font-weight: bold;
 color: white;
 font-family: Verdana;
 font-size: 22pt;
 white-space: nowrap;
 margin-right: 20px;
 display: inline;
 line-height: 115px;
}

The first <div> (id="loginPage") wraps all the content of the login page. It has been sized and positioned to fill
the entire terminal area and given a background image that repeats horizontally. This creates a blue stripe
across the top of the <div>.

The loginLogo <div> has been given a background image that doesn’t repeat and has positions in the top,left
of the <div>. This is the aXes logo. The <div> has also been given a height to make sure the image is visible
and a bottom margin to create a bit of space before the screen fields.

The loginTitleText <div> has been given some appropriate font and color settings. Note the “line-height”
property. This is set to the same height as the loginLogo <div> so that the text will center vertically.

Change The Background Images

Change the first 3 style entries as follows:

#loginPage {
 width:100%;
 height: 100%;
 position: absolute;
 top: 0px;
 left: 0px;
 background: #f7fbff;
}
#loginLogo {
 margin: 30px;
 margin-bottom: 70px;
 display: block;
 height: 40px;
 background: transparent url(http://www.lansa.com/img/lansa_logo.png) no-repeat left
center;
 text-align: right;
}
#loginTitleText {
 font-weight: bold;
 color: #002b6b;
 font-family: Verdana;
 font-size: 22pt;
 white-space: nowrap;
 margin-right: 0px;
 display: inline;
 line-height: 40px;
}

Save your changes, clear your browser cache and reload the page. The result should be like this:

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 242 of 407

Changing the Header Text
Take another look at the loginTitleText <div> in MyTest_Login.html:

<div id="loginTitleText" ax_txtscope="core" ax_txt="Terminal Session"></div>

The <div> is empty but the “ax_txt” attribute tells aXes to fill it with the text “Terminal Session” or a localized
translation if one is available. If you have your header text available in multiple languages, change
“ax_txtscope” value to “cust” and the “ax_txt” value to the key for your string. See Tutorial 9 for more details
on setting up translation files.

For the purposes of this tutorial, we will insert a fixed string:

<div id="loginTitleText">Welcome to LANSA</div>

Save your changes, clear your browser cache and reload the page. The result should be like this:

eXtensions Tutorial 11 – 5250 Screen Styles and Styling - Page 243 of 407

Add in your own Footer Area
Immediately before this tag in MyTest_Login.html:
 <div class="lansaGroupCopyright">

Insert these new lines to add your custom footer area:
<div id="custom_LoginFooter">
At LANSA we attempt to achieve the best for our customers.

We do this by diligence, hard work and attention to detail.

Just ask our customers!
</div>

Add the following declaration to MyTest_Login.css:
#custom_LoginFooter {
 position: absolute;
 bottom: 40px;
 width: 100%;
 text-align: center;
 color: #868686;
 font-size: 10pt ;
 font-weight: normal;
 font-family: Verdana;
}

Save your changes, clear your browser cache and reload the page. The result should be like this:

Now do whatever you like
This example should give you enough basic information to create the look you want in your own custom logon
screen. All you have to do is make sure to test your changes. For the best visual results we strongly
recommend that you consult with a professional graphic designer.

Don’t Forget to Back Up your Work
Remember to back up your custom logon documents.

eXtensions Tutorial 12 - FAQ and Examples

Assumed Knowledge Level
The following material assumes the reader has completed at least Tutorials 0 - 4.

FAQ – Configuration and Standards

Should I give each developer their own Definition Set / Project
Folder?
For training and experimentation purposes you might give each developer their own private definition set /
project folder. When doing a real project you should never do this. Projects should be set up on a discrete
project basis. Work done in a definition set / project folder cannot be merged with work done in another
definition set / project folder. It is normal for multiple developers to be working on the same project with the
same definition set.

Can a screen's customization be completely removed?
Yes. Locate the file named Screen_xxxxxxxxxx.js in your definition set folder and delete it.
Before doing this end all aXes developer sessions.

Can a screen's customization be reverted to an earlier version?
Yes. All the previously saved versions of screen xxxxxxxxxxx are stored in your ScreenVersions definition set
folder's subfolder with names like Screen_xxxxxxxxxx_YYYYMMDD_HHMMSS_mmmmmmm.js.
Locate the one you want, delete the existing Screen_xxxxxxxxxx.js file as in previous question, and then copy
the screen version file into your definition set folder. Rename it to Screen_xxxxxxxxxx.js.
Before doing this end all aXes developer sessions.

If I rename a screen, does AXES automatically remove the old
screen file?
No, AXES will leave the old file intact. You will have to remove it manually.

FAQ – Scripting

Can I create a script that runs when my application starts up and
when the user has signed on?
Yes. See Application Level Basic Properties. Refer to the onApplicationStart, onApplicationEnd, onSignOn and
onSignOff properties.

Can I create a script that runs when a particular screen arrives?
Yes. See axScreenBasicProperties - Screen Level Basic Properties. Refer to the onArrive and onLeave
properties.

Documentation Library

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 245
of 407 407

How can I hide AXES menu bar and status bar?
SHOWAXESMENUBAR and SHOWAXESSTATUSBAR functions control the visibility of menu & status bar. If
you want to always hide the menu / status in your application, put the following code in the onApplicationStart
event of your application.

My script needs to change a property of an element’s eXtension at
runtime. Can it do that?
Yes, using the setProperty method of the element.
For example, a script under a certain condition needs to hide another element named "AdditionalDetails". We
can do this by setting the visible property of the element to false (visible property can be found in the
property sheet under Basic Properties).

The script would look something like this:

Note the last line – you need to call the refresh method of the element after changing a property of an
element in order for the changes to be reflected visually.
Note how this is different from changing the current value of an element (remember that every element has a
text value) using the setValue method – call to refresh is not required after setValue.

To get a property value, use the getProperty method.
Example:
If you wanted to show/hide according to its current state – if visible hide otherwise show:

Note: you could write the above in only 3 lines of code:

SHOWAXESMENUBAR(false); // false = hide, true = show
SHOWAXESSTATUSBAR(false);

// get a reference to the AdditionalDetails element
var F = FIELDS("AdditionalDetails");

// change the visible property to false
F.setProperty("visible", false);

// very important, must call refresh for property changes to take effect
F.refresh();

var F = FIELDS("AdditionalDetails");
var bVisible = F.getProperty("visible");

if (bVisible) {
 F.setProperty("visible", false);
} else {
 F.setProperty("visible", true);
}

F.refresh();

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 246
of 407 407

For more detailed information about getProperty and setProperty methods refer to the Scripting Reference.

Can I stop the user pressing a function key?
Yes. Try this example as the onLeave script in a customized screen:

 When F1 is used this script confirms the usage - selectively cancelling it by setting ENV.returnValue = false;

When I reference the TABLEMANAGER in a USERENV.js function I
get a runtime error, why?

Please refer to the section eXtension Scripting Global Functions & Objects in the Extension Scripting Reference.
You must either pass the ENV object as a parameter to the UserEnv.js function or alternatively a direct
reference to the table manager.
For example – in an extension property script you call a function in UserEnv.js called makeChart() and
makeChart() which needs to refer to the table manager:
In the property script use

and in the UserEnv.js function

OR

var F = FIELDS("AdditionalDetails");
F.setProperty("visible",!(F.getProperty("visible")))
F.refresh();

if (ENV.key == "F1") {
 var bOK = window.confirm("Press OK to send F1=Help request. Click Cancel to stop it.");
 if (!bOK) ENV.returnValue = false;
}

makeChart(ENV, …)

makeChart : function(env, …)
{
 ENV.TABLEMANAGER.loadStaticTables(this.staticTablesFile)
}

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 247
of 407 407

In the property script use

and in the UserEnv.js function

makeChart(ENV.TABLEMANAGER, …)

makeChart : function(env, …)
{
 ENV.TABLEMANAGER.loadStaticTables(this.staticTablesFile)
}

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 248
of 407 407

FAQ – Customizing eXtensions

I want to always use the “Modern” look for all my group box
eXtensions, can I do this without having to change the “look”
property of each group box?
Yes. However, this feature is only available in TS Developer and TS2 Developer (TS2 Developer aXes 311.001
and latest releases).
When an eXtension is applied to a screen element, it is created based on a template. Every eXtension template
is customizable – so what you need to do is to customize the group box template. Follow these steps to change
the group box template’s “look” property to “modern”:
TS developer
1. Switch the aXes Designer’s view to Application Properties by clicking on the View Application
Properties button at the bottom of the window.

2. Click on the Edit Application Properties button to switch to edit mode.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 249
of 407 407

3. Click on the Edit Extensions button at the bottom of the window.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 250
of 407 407

4. The Customize eXtensions window will appear, showing customizable eXtensions and a property sheet
showing their current default values. Select Group Box in the drop down. Change the “look” property to

“Modern”

5. Close this window. Now save the changes you made by clicking on the Save button at the top of the aXes
Designer window. You should see a message indicating a successful save.

TS2 Developer
1. Select Application from the Extendable Objects dropdown list in Developer and eXtensions tab.

Click Edit Items button of the eXtensions property at Extension Template section.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 251
of 407 407

2. Edit Extensions Template window will appear. showing customizable eXtensions and a property
sheet showing their current default values. Select Group Box in the drop down. Change the
“look” property from ”Classic” to “Modern”. Click Ok button to close the window.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 252
of 407 407

3. Now click the Save button to save the change you made on Application properties.

Now whenever you apply the group box eXtension to a screen element, you will see that the “look” property is
always set to “Modern” by default.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 253
of 407 407

When I have modified a property in an eXtension template, can I
override the property value in certain eXtension instances?
Yes you can. Remember that what you modify in the template is just a default value. You can always set a
different value in your actual eXtension instances.

What else do I need to know about customizing eXtension
templates?
- Customize as early as possible before you start applying eXtensions to the screen elements.
- Customizing templates instead of modifying properties of each eXtension instances will result in a smaller

screen definition file (which means faster download from the server) as AXES only stores properties whose
values are different from the default.

- The “style” property of various eXtensions (e.g. button eXtensions) is a particularly good example of a
property that should be set once only in the template as you would normally want all buttons to have the
same style.

When I change the default “style” property of button eXtension,
would this affect those buttons I created prior to this point?
Yes – as long as you haven’t modified the “style” property of those buttons. Remember that AXES physically
stores only values that are different from their default values. So if you put various button eXtensions on your
screen and you didn’t touch the “style” property of those buttons, any changes made to “style” property in the
button template will immediately be reflected in all existing button instances.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 254
of 407 407

FAQ – 5250 Popups

PopUp Windows and Screen Rendering in aXes-TS2
Over the years various 5250 pseudo window techniques have been utilized by 5250
developers. There are some important things you need to understand about them:

• In no viable way are they really desktop windows - or even particularly viable substitutes
for Windows desktop windows (in the sense of the full Windows API capabilities).

• In new application design terms you should always view 5250 windows as the poor cousins
of real Windows desktop windows (and even many other windows controls when used for
field prompting).

These 5250 pseudo windows come in three basic forms:

• Imitations: the developer creates the appearance of a box using characters such as . : _ |
(or a space with a background colour) to create a border. Recognising and dealing with
windows of this type is not covered here.

• DDS(-defined) windows: the developer uses the DDS WINDOW keyword to define the
window and the operating system uses graphics characters to draw the window on the
terminal.

• Degraded DDS windows: the developer has defined the window in DDS but failed to leave
space around it for the attribute bytes to turn graphics characters on/off. In this scenario,
the operating system will draw it like a window imitation.

On most terminal emulators, degraded DDS windows look quite different to properly
defined DDS windows so they should be easy to identify.

URL Popups Parameter
Until Version 2.1 aXes-TS2 treated every screen as a new screen and rendered it from
scratch.

In aXes-TS2 V2.1 a new parameter popups has been introduced to the aXes URL to
identify and handle degraded DDS windows and to provide the option of keeping the
previous screen background unchanged when a popup window is drawn over it.

Recognising Degraded DDS Windows
Until Version 2.1 aXes-TS2 did not recognise degraded DDS windows. This means they
were not drawn in boxes with borders with shadows that make the windows stand out
clearly. aXes was also unable to prevent user interaction with the background.

To address this issue the aXes-TS2 engine has been modified to identify degraded DDS
windows. It checks the details of the DDS record formats of the frontmost window sent
by the aXesTS server, and if a record format of type “window” exists, but the screen
contains no windows, aXes knows that a degraded DDS window exists and it can create
one.

This behavior is enabled by default. The developer can use the URL popups parameter to
instruct aXes to disable degraded DDS window detection:

http:\<host>\ts\ts2\index.html?popups=0

or

http:\<host>\ts\ts2\index.html?popups=2

See URL Parameters.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 255
of 407 407

Limitations
If a degraded DDS window is drawn on top of another similar window, this technique
cannot tell if it is a new window or the same window and will replace the currently
rendered window.

Degraded DDS windows cannot be identified in TELNET/PASSTHRU sessions because
DDS level record format information is not available.

Keeping the Background Customizations
Prior to version 2.1, when a window is drawn over the current window, any
customizations applied to the background window are lost because aXes redraws the
screen from scratch and the background is redrawn as uncustomized. This is not a
functional problem but the changes in the background window may be confusing to the
user.

Therefore aXes-TS2 screen rendering has been modified so that instead of automatically
redrawing the screen from scratch, it can check if the virtual device has any windows. It
compares the number found with the number currently rendered, deletes any excess
(i.e. if the previous screen had a window now closed) and then redraws the topmost
window. This way, the background along with any customizations remains intact.

In the majority of situations the background should be kept. This is the default behavior.
However, to allow for special circumstances the developer can use the popups parameter
to instruct aXes to not keep the background:

http:\<host>\ts\ts2\index.html?popups=0

or

http:\<host>\ts\ts2\index.html?popups=1

It should be noted that when the screen background is kept, there is a possibility of
screen level eXtensions interfering with each other in unexpected ways. A window is
seen as a new screen and, when customized, gets its own set of screen eXtensions.
Where extensions were previously applied to a “clean slate”, they are now being applied
on top of the extensions from one or more previous screens. This may produce some
unexpected results.

See URL Parameters.

When I start customizing a popup screen, it completely covers the
whole screen, is this normal?
Yes. Popup screens will only show the previous screen in the area surrounding the popup if the popup screen is
uncustomized. Once you start to customize a popup screen, it will cover up the surrounding area.

I have customized a screen (screen A) that can invoke a popup (screen
B). When the popup appears, what was shown in the background is the
original uncustomized screen A instead of the customized one. What
should I do?

From version 2.1.11 onwards aXes-TS2 will keep the background customizations. Check that this has not been
turned off with the popups parameter of the axes URL. See Keeping the Background Customizations.

In aXes-TS1 make the popup screen (screen B) into a customized screen - even when you don’t change
anything in the popup screen.
See the FAQ item above – when a popup screen (screen B) is customized, it will completely cover the whole
screen & the previous screen (screen A) will not show in the background anymore.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 256
of 407 407

My popup is making use of the cursor to allow the user to select an item
from a list, how will this work after the screen has been customized as
the cursor does not show anymore?
If your popup allows the user to select a value by displaying a list of values, and the user selects one by
putting the cursor on the list entry and pressing enter, then the best alternative is to customize the popup
screen and add a hyperlink extension to the first field in the popup's list, as explained in the section above
(Example – Working with 5250 Cursor).
You could also enable the limitedCursorSupport option on the popup screen, though visually, the first option
is much better. Note that the limited cursor support is meant as a temporary measure only and should not be
used as a permanent solution.
If you are enabling the limitedCursorSupport, make sure that you set the keepPopupLocation property of
the popup screen to true.

PopupWindow Extension
You can use the axPopupWindow extension to customize the position, size and style of a 5250 window in TS2.
You may want to use the extension for example when you have a customised background that has rearranged
the screen and you also need to move the initial position of popups.

FAQ – Calling IBM i Server programs from eXtension scripts
The TABLEMANAGER object provided by aXes allows you to call RPG or CL programs directly from eXtension
JavaScript. The programs that you call need to be thread safe. See the end of this section for more details.
Typically the calls are made when a button or hyperlink is clicked.

Example 1 – Call with no parameters
Server CL program
This small CL program named LOTST009 sends a message to the system history log:

PGM
SNDPGMMSG MSG('Hello from LOTST009') TOMSGQ(QHST)
ENDPGM

Button onClick JavaScript coding in Axes

TABLEMANAGER.callProgram("LOTST009","QGPL");

Result
Display the system history log (DSPLOG command) and locate message "Hello from LOTST009".

Example 2 – Call with one parameter
Server CL program
This small CL program named LOTST011 sends a message to the system history log. The message text is
passed into the program as a parameter.

PGM (&MSG)
 DCL &MSG *CHAR 132
 SNDPGMMSG MSG(&MSG) TOMSGQ(QHST)
ENDPGM

Button onClick JavaScript coding in Axes

TABLEMANAGER.callProgram("LOTST011","QGPL",
 {type:"alpha",len:132,value:"This is a test message"});

Result
Display the system history log (DSPLOG command) and locate message "This is a test message".

Example 3 – Call with a returned value
Server CL program
This small CL program named LOTST001 concatenates two alpha parameters and returns the result.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 257
of 407 407

PGM (&P1 &P2 &P3)
 DCL &P1 *CHAR 10
 DCL &P2 *CHAR 10
 DCL &P3 *CHAR 20
 CHGVAR &P3 (&P1 *CAT &P2)
ENDPGM

Button onClick JavaScript coding in Axes

var result = TABLEMANAGER.callProgram("LOTST001","QGPL",
 {type:"alpha",len:10,value:"Hello"},
 {type:"alpha",len:10,value:"World"},
 {type:"alpha",len:20,pass:false,ret:true});

if (result.error) alert("Call Failed");
else alert(result.returnParms[3]);

Result

Example 4 – Numeric Parameters passed and returned
Server CL program
This small CL program named LOTST002 adds up 3 packed decimal parameters and returns the result.

PGM (&P1 &P2 &P3 &P4)
DCL &P1 *DEC (7 0)
DCL &P2 *DEC (9 2)
DCL &P3 *DEC (12 5)
DCL &P4 *DEC (15 5)
CHGVAR &P4 (&P1 + &P2 + &P3)
ENDPGM

Button onClick JavaScript coding in Axes
var result = TABLEMANAGER.callProgram("LOTST002","QGPL",
 { type:"packed",len:7,dec:0,value: 4 },
 { type:"packed",len:9,dec:2,value: 7.7 },
 { type:"packed",len:12,dec:5,value: 820.12345 },
 { type:"packed",len:15,dec:5,pass:false,ret:true });

if (result.error) alert("Call Failed");
else
{
 var strp4 = result.returnParms[4]; /* Should be 831.82345 as string */
 var intp4 = parseInt(strp4,10) + 42; /* Should be 831 + 42 = 873 */
 var floatp4 = parseFloat(strp4) + 123.75868; /* Should be 955.58213 as float */
 alert("strp4=" + strp4 + ", intp4=" + intp4.toString() + ", floatp4=" +
floatp4.toString());
}

Result
Note that the returned parameter (strP4) is a always a string. By using the standard JavaScript functions
parseInt() and parseFloat() it can easily be converted to a number for further manipulation by JavaScript code.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 258
of 407 407

Example 5 – Value Passed and Returned in same Parm
Server CL program
This small CL program named LOTST005 sends a message to the system operator and returns "OKAY":
PGM (&P1)
DCL &P1 *CHAR 20
SNDMSG MSG(&P1) TOMSGQ(QSYSOPR)
CHGVAR &P1 'OKAY'
ENDPGM

Button onClick JavaScript coding in Axes

var message = "Hello from LOTST005";
var result = TABLEMANAGER.callProgram("LOTST005","QGPL",
 {type:"alpha",len:20,pass:true,ret:true,value:message});

if (result.error) alert("Call Failed");
else alert(result.returnParms[1]);

Result

Example 6 – Multiple Values Passed and Returned
Server CL program
This small CL program named LOTST007 receives and returns multiple parameters:
PGM (&P1 &P2 &P3 &P4)
DCL &P1 *CHAR 10
DCL &P2 *CHAR 10
DCL &P3 *CHAR 20
DCL &P4 *CHAR 10
CHGVAR &P3 (&P1 *CAT &P2)
CHGVAR &P4 'OKAY'
ENDPGM

Button onClick JavaScript coding in Axes

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 259
of 407 407

var p1 = "JavaScript";
var p2 = "is Good";
var result = TABLEMANAGER.callProgram("LOTST007","QGPL",
 { type:"alpha",len:10,pass:true,value:p1 },
 { type:"alpha",len:10,pass:true,value:p2 },
 { type:"alpha",len:20,pass:false,ret:true },
 { type:"alpha",len:10,pass:false,ret:true });
if (result.error) alert("Call Failed");
else
{
 var p3 = result.returnParms[3];
 var p4 = result.returnParms[4];
 alert("p3=" + p3 + ", p4=" + p4);
}

Result

Example 7 – Multiple Values Returned in One Parameter
Server CL program
This small CL program named LOTST010 returns a 2000 byte string containing the aXes server's job name,
user profile, job number and current output queue. The returned information is formatted as a JSON string.
This program is the tip of a very large iceberg of possibility.

PGM (&JSON)
 DCL &JSON *CHAR 2000

 DCL &JOB *CHAR 10
 DCL &USER *CHAR 10
 DCL &JOBNBR *CHAR 6
 DCL &OUTQ *CHAR 10

 RTVJOBA JOB(&JOB) USER(&USER) NBR(&JOBNBR) OUTQ(&OUTQ)

 CHGVAR &JSON (' JOB:"' || &JOB |< '"')
 CHGVAR &JSON (&JSON |< ',JOBNBR:"' || &JOBNBR |< '"')
 CHGVAR &JSON (&JSON |< ',USER:"' || &USER |< '"')
 CHGVAR &JSON (&JSON |< ',OUTQ:"' || &OUTQ |< '"')

ENDPGM

Button onClick JavaScript coding in Axes – Stage 1

var result =
TABLEMANAGER.callProgram("LOTST010","QGPL",{type:"alpha",len:2000,pass:false,ret:true});
alert(result.returnParms[1]);

Result – Stage 1

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 260
of 407 407

The CL program LOTST010 is executed and it returns a long string with the job name, job number, user and
output queue all imbedded in it.

In effect LOTST010 has returned 4 values, but done it using a single program parameter.
Note how the returned string is formatted in much the same way as the program arguments are specified in
JavaScript - type:"alpha",len:2000,pass:false,ret:true

Button onClick JavaScript coding in Axes – Stage 2

var result =
TABLEMANAGER.callProgram("LOTST010","QGPL",{type:"alpha",len:2000,pass:false,ret:true});
try
{
 var Info = eval("({" + result.returnParms[1] + "})")
 window.alert("Job=" + Info.JOB + ", Job Number=" + Info.JOBNBR + ", User=" + Info.USER +
",Output Queue=" + Info.OUTQ);
}
catch (oe)
{
 window.alert("Error " + oe.description + " detected when loading JSON data " +
result.returnParms[1]);
}

Result – Stage 2

The CL program LOTST010 is executed and it returns a long string with the job name, job number, user and
output queue all imbedded in it.

The value returned is in JSON string format.

The returned value is executed by using a JavaScript eval operation to create a JavaScript object named Info.

Now the properties Info.JOB, Info.JOBNBR, , Info.USER and Info.OUTQ are all accessible to the JavaScript
code. In effect the 4 values returned by CL program LOTST010 are now individually accessible as JavaScript
object properties.

The JSON interface format is a driving part of the Web 2.0 / AJAX technologies. Some of the reasons it is very
useful include:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 261
of 407 407

• You can alter CL program LOTST010 to return more values at any time. This would not
upset any existing JavaScript calls to LOTST010. That would not be true if you were
using traditional parameters – every caller would need to change.

• Your JavaScript can easily check whether the version of LOTST010 that it called has

actually returned a property by coding, say,

var UseJobSize = 42; /* Set the default value this thing */
if (Info.JOBSIZE != null) UseJobSize = Info.JOBSIZE; /* Server value provided */

to decide whether LOTST010 returned a value named JOBSIZE.

• The JSON string you return can be much more complex in nature and include lists,
arrays, structures, etc. All of these are instantly accessible to your JavaScript code.

Usage Rules, Guidelines and Tips
The server side program calls are not performed in the same job as the 5250 session. They are initiated from
within the aXes server job.

The calls are performed under the user profile that the aXes server jobs run under – not under the user profile
who started the 5250 session. However, you can call a CL program that submits jobs for execution under 5250
users profile. See the IBM i SBMJOB command and the concept of job descriptions.

The calls are performed in a multi-threaded process. This means that all resources are shared with all the
other active threads - which may also be executing concurrent call operations.

Some of the things that this means include:
You have only 1 QTEMP library that is shared by all threads in the process (ie: IBM i server job).

The IBM i library list concept cannot be practically used. If you change the job's library list then a millisecond
later another thread may alter it to something else. You have to use library qualified reference to most IBM i
objects. Implement a design such that the client USERENV object knows the library name(s) associated with
the 5250 user and pass them to the server program(s) as parameters so that all object references are fully
qualified.
Your CL and RPG programs need to be compiled to be thread safe. Generally programs should be compiled
using the CRTBNDCL or CRTBNDRPG commands. RPG programs probably need to use the
THREAD(*SERIALIZE) control specification option. You should also review all IBM supplied documentation for
executing multi-threaded RPG and CL programs before using this aXes feature.
Your CL and RPG programs cannot open a 5250 display file because they are not executing in a context where
they are associated with a 5250 device.
Your CL and RPG programs need to be robust. They need to trap errors and handle them gracefully releasing
all open or allocated resources.

Your CL and RPG programs need to be symmetrical in resource usage. Basically this means that if something is
opened, locked or allocated as the program is executing it always it needs to be symmetrically closed, unlocked
or de-allocated as the program is terminating.
Your server programs need to be stateless between each call. This means they must terminate (set on LR in
RPG terminology) at the end of every call and cannot remember values between calls in their variables nor
leave any resource open or allocated. Where a stateful design is required, typically a unique token or some sort
of session id is assigned by the server that can be used to save and restore state on each call.

Your CL and RPG programs need to execute quickly. Anything that would take more than 1 or 2 seconds to
execute should be submitted to batch instead.

If your 5250 session locks up you probably have poor error handling in your program. It has failed and is
waiting for the system operator to reply to a message. It is recommended that you improve such default IBM i
error handling.

Your RPG or CL program must never ever change the execution characteristics of the IBM i job they are
executing. Job characteristics include anything that may impact other programs executing within the same job
– including things like library lists, priorities, activation groups, CCSIDs, contents of QTEMP, etc.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 262
of 407 407

FAQ – Developer Mode Issues

aXes Designer has become very sluggish, is there anything I can
do?
After using aXes in developer mode for a while, you might feel that it has become slow and heavy. This could
be caused by the Internet Explorer memory leaking. Unfortunately there is no solution to this problem and the
only way to get around this is by restarting your browser completely when you are experiencing this problem.
Please make sure that you completely close your browser window (as opposed to just reloading aXes).

I’m getting an error message “System call failed” while
attempting to perform an operation in the designer. What should I
do?

If you are in the middle of editing, save your work immediately.
Then close your browser window and reopen it.

Example – Using a Hyperlink to select a subfile entry

Start Point
The shipped aXes demonstration screen named XHRRPGTRN_Select is used.
The subfile selection column is field named Sel and the employee number column is named Employee:

Result
The selection column is still visible, but an employee can be selected and displayed by clicking on the employee
number hyperlink:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 263
of 407 407

Steps

 The employee column was selected and changed to be a Hyperlink.

 These properties were then set in the hyperlink eXtension:

caption (script):

ENV.returnValue = FIELD.getValue();

style

onClick (script)

/* Find out the subfile index of this field (the one clicked on) */

var iSFLIndex = FIELD.getIndex();

/* Get a reference to the "Sel" field with the same subfile index */

var oSel = FIELDS("Sel",iSFLIndex);

/* If found, set the "Sel" field to "X" and press Enter */

if (oSel != null)
{
 oSel.setValue("X");
 SENDKEY("Enter");
}

mouseOverColor

blue

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 264
of 407 407

Example – Iterating through subfiles entries

Start Point
The shipped aXes demonstration screen named XHRRPGTRN_Select is used.
The subfile selection column field is named Sel, and the employee number, Surname and Given Name columns
are named Employee, Surname and Given_Name respectively:

Result
A copy to clipboard push button has been added. When clicked all the subfile entries on the current screen are
copied to the clipboard:

Steps

 A new element was added to the screen as a push button.

 These properties were then set in the push button eXtension:

caption (simple text):

Copy Subfile to Clipboard

onClick (script)

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 265
of 407 407

var sClipData = "";
var sTab = "\t";

var iSFLIndex = 1;
var oEmployee = FIELDS("Employee",iSFLIndex);
while (oEmployee != null)
{
 var oSurname = FIELDS("Surname",iSFLIndex);
 var oGivenName = FIELDS("Given_Name",iSFLIndex);
 sClipData += oEmployee.getValue() + sTab;

 if (oSurname != null) sClipData += oSurname.getValue() + sTab;
 else sClipData += "UNKNOWN" + sTab;

 if (oGivenName != null) sClipData += oGivenName.getValue() + sTab;
 else sClipData += "UNKNOWN" + sTab;

 sClipData += "\n";
 iSFLIndex += 1;
 oEmployee = FIELDS("Employee",iSFLIndex);
}
window.clipboardData.clearData();
window.clipboardData.setData("Text",sClipData);

Observations
The employee number field was chosen to drive the subfile iteration loop because it exists for every subfile
entry.

The subfile iteration loop is structured like this:

var iSFLIndex = 1;
var oEmployee = FIELDS("Employee",iSFLIndex);
while (oEmployee != null)
{

 << Process employee >>

 iSFLIndex += 1;
 oEmployee = FIELDS("Employee",iSFLIndex);
}

The loop starts at entry one and proceeds until an employee number cannot be found in the subfile.

When iterating a subfile the possibility exists that blank outfield entry will not actually exist on the 5250
display. That is why the logic

 var oSurname = FIELDS("Surname",iSFLIndex);

 if (oSurname != null) sClipData += oSurname.getValue() + sTab;
 else sClipData += "UNKNOWN" + sTab;

is used. It caters for the fact that an employee's surname may be blank and therefore the entry does not exist
in the subfile.

The clipboard data is tab delimited so it can be pasted as columns to, for example, MS-Excel.

You would probably not code logic like this in a real application. It would be better to create a generic subfile
clipboard function in your USERENV object and simply call it from the onClick routine.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 266
of 407 407

Example – USERENV and Generic Coding

Start Point
The shipped aXes demonstration screen named XHRRPGTRN_Select is used.
The subfile selection column field is named Sel, and the employee number, Surname, Given Name and Date of
Birth columns are named Employee, Surname and Given_Name and Date_of_Birth respectively:

Result
A copy to clipboard push button has been added. When clicked all the subfile entries on the current screen are
copied to the clipboard. The copy is achieved by invoking a generic function defined in the USERENV object:

Steps

 This generic function was added to the USERENV object (this code is a generic version of the code using in

the preceding subfile and clipboard example):

 sendSubfiletoClipBoard : function(oP)
 {
 var iSFLIndex = 0;
 var iLimit = oP.sendFields.length;
 var sClipData = "";
 var sTab = "\t";
 var sNL = "\n";
 var oiterField = null;

 iSFLIndex = 1;
 oiterField = oP.ENV.FIELDS(oP.iterField,iSFLIndex);
 while (oiterField != null)
 {
 for (var i = 0; i < iLimit; i++)
 {
 var osendField = oP.ENV.FIELDS(oP.sendFields[i],iSFLIndex);
 if (osendField != null) sClipData += osendField.getValue() + sTab;
 else sClipData += oP.notFound + sTab;
 }
 sClipData += sNL;
 iSFLIndex += 1;
 oiterField = oP.ENV.FIELDS(oP.iterField,iSFLIndex);
 }

 window.clipboardData.clearData();
 if (sClipData != "") window.clipboardData.setData("Text",sClipData);

 }, /* <= Note the comma */

 A new aXes developer browser session was started to ensure that the updated USERENV code is loaded.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 267
of 407 407

 A new element was added to the XHRRPGTRN_Select screen as a push button.

 These properties were then set in the push button eXtension:

caption (simple text):

Copy Subfile to Clipboard

onClick (script)

var oP = { ENV : ENV,
 iterField : "Employee",
 notFound : "Not found",
 sendFields: ["Employee","Surname","Given_Name","Date_of_Birth"] };

USERENV.sendSubfiletoClipBoard(oP);

Observations
The USERENV function sendSubfiletoClipBoard receives an object as a parameter.

The properties within the object parameter are:

 ENV: a reference to the calling scripts ENV execution environment. This allows the generic code to
access the callers standard functions, etc.

 iterField: The name of the subfile fields to use to iterate the subfile.
 notFound: The text to be output to the clipboard for a field not found in the subfile.
 sendFields: An array of the names of the subfile fields to be copied to the clipboard.

Using a generic routine like this in USERENV means that it is easier to add a "Copy to Clipboard" button to lots
of screens and avoid repeating JavaScript code.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 268
of 407 407

Example – Selectively Iterating through subfiles entries

Start Point
The shipped aXes demonstration screen named XHRRPGTRN_Select is used.
The subfile selection column field is named Sel, and the employee number, Surname and Given Name columns
are named Employee, Surname and Given_Name respectively:

Result
A copy to clipboard push button has been added. When clicked subfile entries selected with a "C" on the
current screen are copied to the clipboard:

Steps

 A new element was added to the screen as a push button.

 These properties were then set in the push button eXtension:

caption (simple text):

Copy Subfile to Clipboard

onClick (script)

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 269
of 407 407

var sClipData = "";
var sTab = "\t";

var iSFLIndex = 1;
var oSel = FIELDS("Sel",iSFLIndex);
while (oSel != null)
{
 if (oSel.getValue() == "C")
 {
 var oEmployee = FIELDS("Employee",iSFLIndex);
 var oSurname = FIELDS("Surname",iSFLIndex);
 var oGivenName = FIELDS("Given_Name",iSFLIndex);
 oSel.setValue(" ");
 sClipData += oEmployee.getValue() + sTab;
 if (oSurname != null) sClipData += oSurname.getValue() + sTab;
 else sClipData += "UNKNOWN" + sTab;
 if (oGivenName != null) sClipData += oGivenName.getValue() + sTab;
 else sClipData += "UNKNOWN" + sTab;
 sClipData += "\n";
 }

 iSFLIndex += 1;
 oSel = FIELDS("Sel",iSFLIndex);
}

if (sClipData == "")
{
 window.alert("No employees were selected to copy. Put a C beside the employees to copy.");
}
else
{
 window.clipboardData.clearData();
 window.clipboardData.setData("Text",sClipData);
}

Observations
The selection ("Sel") field was chosen to drive the subfile iteration loop because it exists for every subfile entry
as it is an input field. The subfile iteration loop is structured like this:

var iSFLIndex = 1;
var oSel = FIELDS("Sel",iSFLIndex);
while (oSel != null)
{
 if (oSel.getValue() == "C")
 {
 << Process selected subfile Entry >>
 }

 iSFLIndex += 1;
 oSel = FIELDS("Sel",iSFLIndex);
}

The loop starts at entry one and proceeds until no selection field can be found. Only entries selected with a "C"
are processed.

This line removes the "C" from a selected line:

oSel.setValue(" ");

When iterating a subfile, the possibility exists that a blank outfield entry will not actually exist on the 5250
display. That is why the logic

 var oSurname = FIELDS("Surname",iSFLIndex);

 if (oSurname != null) sClipData += oSurname.getValue() + sTab;
 else sClipData += "UNKNOWN" + sTab;

is used. It caters for the fact that an employee's surname may be blank and therefore the entry does not exist
in the subfile.

The clipboard data is tab delimited. This makes it nice to paste into MS-Excel.

You would probably not code logic like this in a real application. It would be better to create a generic subfile
clipboard function in your USERENV object and simply call it from the onClick routine.

Example - Hiding and Showing Fields on a Customized Screens
The starting point for this example is the System i Main Menu, where:

 The screen is named MAIN

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 270
of 407 407

 The selection or command field is named CommandLine.
 Two push button eXtensions, captioned Show and Hide, have been added.

The onClick property of the Show push button is set to this:

var cmdfld= FIELDS("CommandLine");

cmdfld.setProperty("visible",true);

cmdfld.refresh();

The onClick property of the Hide push button is set to this:

var cmdfld= FIELDS("CommandLine");

cmdfld.setProperty("visible",false);

cmdfld.refresh();

When clicked they cause the selection or command field (CommandLine) to appear and disappear.

You can minimize this type of scripting by adding two generic functions like this to your USERENV object:

 showField : function(env,name,index)
 {
 var oField = env.FIELDS(name,index);
 if (oField != null)
 {
 oField.setProperty("visible",true);
 oField.refresh();
 }
 },

 hideField : function(env,name,index)
 {
 var oField = env.FIELDS(name,index);
 if (oField != null)
 {
 oField.setProperty("visible",false);
 oField.refresh();
 }
 },

Now the onClick property of the Show push button may be reduced to this:

USERENV.showField(ENV,"CommandLine");

and the onClick property of the Hide push button reduced to this:

USERENV.hideField(ENV,"CommandLine");

You now have generic hide and show functions you can use on any field.

Some other notes about this example:

• The ENV parameter passed into the hide and show functions as a way that it can operate in your scripts

context/environment. For example, by passing ENV to the functions they can use the ENV.FIELDS()
function.

• The optional index parameter used by the show and hide functions is for when you are dealing with subfile

fields. Pass it as the index of the subfile field.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 271
of 407 407

• Don't forget to close and restart your aXes development session to pick up USERENV object definition

changes.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 272
of 407 407

Example – Dynamic Styling
Start Point
The shipped aXes demonstration screen named XHRRPGTRN_Select is used.

Result
The style of the Date of Birth Column is changed dynamically to highlight people born in the 50s, 60s, and 70s.
Dynamic styling is often used to draw attention to special situations:

Note: The color scheme here is only being used to demonstrate a technique.

Steps

 The Date of Birth element was selected and these properties were set in its Default Visualization

eXtension:

style (as script)

var sDecade = FIELD.getValue().charAt(6);

var oStyle = null;

switch (sDecade)
{
 case "5": oStyle = {"color":"red", "background":"black"}; break;
 case "6": oStyle = {"color":"orange","background":"white"}; break;
 case "7": oStyle = {"color":"white", "background":"orange"}; break;
 default : oStyle = {"color":"blue"}; break;
}

ENV.returnValue = oStyle;

Observations

Dynamically evaluated styles need to return a JavaScript object containing the style property name and its
value.
The preceding code does this by dynamically manufacturing an object containing the required style properties.

If this code was added to the USERENV object:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 273
of 407 407

/* --
/* The USERENV object contains all customer defined shared scripts and
/* --

var USERENV =
{
 o50DecadeStyle : {"color":"red", "background":"black"},
 o60DecadeStyle : {"color":"orange","background":"white"},
 o70DecadeStyle : {"color":"white", "background":"orange"},
 oDftDecadeStyle : {"color":"blue"},

and the preceding dynamic styling code was changed to this:

var sDecade = FIELD.getValue().charAt(6);
switch (sDecade)
{
 case "5": ENV.returnValue = USERENV.o50DecadeStyle; break;
 case "6": ENV.returnValue = USERENV.o60DecadeStyle; break;
 case "7": ENV.returnValue = USERENV.o70DecadeStyle; break;
 default : ENV.returnValue = USERENV.oDftDecadeStyle; break;;
}

then the result would be improved for two reasons:

 The styles have been externalized for a single point of change.

 The code is considerably more efficient because the returned styles objects do not have to be
repeatedly created. Only the 4 decade styles in USERENV ever have to be created.

Note: If you try this approach out - remember that you have to signoff, then close and reopen the browser
window for any changes to USERENV to be loaded. USERENV is only loaded as the aXes terminal session is
started.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 274
of 407 407

Example – Dynamically refreshing a drop down without server
interaction

Start Point
The shipped aXes demonstration screen named XHRRPGTRN_Maint is used.
The State field is named Employee_State and the Country field is Employee_Country:

Result
Employee_State and Employee_Country are replaced with drop downs that source its data from static tables.
Employee_State is sensitive to the value of Employee_Country so that it will show the states for the selected
country without server interaction:

Steps

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 275
of 407 407

Edit tables_static.txt and add the following table of US and Australian states:

DefineObjectInstance {

 className = "StaticTable",
 name = "US_OZ_State",
 source = "inline",
 rows = {
 {value="AK",text="Alaska", countryCode="USA"},
 {value="AL",text="Alabama", countryCode="USA"},
 {value="AR",text="Arkansas", countryCode="USA"},
 {value="AS",text="American Samoa", countryCode="USA"},
 {value="AZ",text="Arizona", countryCode="USA"},
 {value="CA",text="California", countryCode="USA"},
 {value="CO",text="Colorado", countryCode="USA"},
 {value="CT",text="Connecticut", countryCode="USA"},
 {value="DC",text="District of Columbia", countryCode="USA"},
 {value="DE",text="Delaware", countryCode="USA"},
 {value="FL",text="Florida", countryCode="USA"},
 {value="GA",text="Georgia", countryCode="USA"},
 {value="GU",text="Guam", countryCode="USA"},
 {value="HI",text="Hawaii", countryCode="USA"},
 {value="IA",text="Iowa", countryCode="USA"},
 {value="ID",text="Idaho", countryCode="USA"},
 {value="IL",text="Illinois", countryCode="USA"},
 {value="IN",text="Indiana", countryCode="USA"},
 {value="KS",text="Kansas", countryCode="USA"},
 {value="KY",text="Kentucky", countryCode="USA"},
 {value="LA",text="Louisiana", countryCode="USA"},
 {value="MA",text="Massachusetts", countryCode="USA"},
 {value="MD",text="Maryland", countryCode="USA"},
 {value="ME",text="Maine", countryCode="USA"},
 {value="MI",text="Michigan", countryCode="USA"},
 {value="MN",text="Minnesota", countryCode="USA"},
 {value="MO",text="Missouri", countryCode="USA"},
 {value="MP",text="Northern Mariana Islands", countryCode="USA"},
 {value="MS",text="Mississippi", countryCode="USA"},
 {value="MT",text="Montana", countryCode="USA"},
 {value="NC",text="North Carolina", countryCode="USA"},
 {value="ND",text="North Dakota", countryCode="USA"},
 {value="NE",text="Nebraska", countryCode="USA"},
 {value="NH",text="New Hampshire", countryCode="USA"},
 {value="NJ",text="New Jersey", countryCode="USA"},
 {value="NM",text="New Mexico", countryCode="USA"},
 {value="NV",text="Nevada", countryCode="USA"},
 {value="NY",text="New York", countryCode="USA"},
 {value="OH",text="Ohio", countryCode="USA"},
 {value="OK",text="Oklahoma", countryCode="USA"},
 {value="OR",text="Oregon", countryCode="USA"},
 {value="PA",text="Pennsylvania", countryCode="USA"},
 {value="PR",text="Puerto Rico", countryCode="USA"},
 {value="RI",text="Rhode Island", countryCode="USA"},
 {value="SC",text="South Carolina", countryCode="USA"},
 {value="SD",text="South Dakota", countryCode="USA"},
 {value="TN",text="Tennessee", countryCode="USA"},
 {value="TX",text="Texas", countryCode="USA"},
 {value="UM",text="United States Minor Outlying Islands", countryCode="USA"},
 {value="UT",text="Utah", countryCode="USA"},
 {value="VA",text="Virginia", countryCode="USA"},
 {value="VI",text="Virgin Islands", countryCode="USA"},
 {value="VT",text="Vermont", countryCode="USA"},
 {value="WA",text="Washington", countryCode="USA"},
 {value="WI",text="Wisconsin", countryCode="USA"},
 {value="WV",text="West Virginia", countryCode="USA"},
 {value="WY",text="Wyoming", countryCode="USA"},
 {value="ACT",text="Canberra", countryCode="AUS"},
 {value="NSW",text="New South Wales", countryCode="AUS"},
 {value="QLD",text="Queensland", countryCode="AUS"},
 {value="NT",text="Northern Territory", countryCode="AUS"},
 {value="SA",text="South Australia", countryCode="AUS"},
 {value="VIC",text="Victoria", countryCode="AUS"},
 {value="WA",text="Western Australia", countryCode="AUS"},
 {value="TAS",text="Tasmania", countryCode="AUS"},
 },
};

 Employee_State was selected and changed to be a Drop Down.

 These properties were then set in the Drop Down eXtension:

dataSourceType:

 Static Table

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 276
of 407 407

 tableName:

 US_OZ_State

onFillDropDown (script):

/* Get the current country */
var currentCountry = FIELDS("Employee_Country").getValue();

/* Only add entries to the drop down which match the value of the country field */
if (currentCountry == ROW.countryCode)
{
 ENV.returnValue = ROW.text;
}
else
{
 ENV.returnValue = null;
}
• Employee_Country was selected and changed to be a Drop Down

• These properties were then set in the Drop Down eXtension:

dataSourceType:

 Static Table

 tableName:

 ISOCountry

onFillDropDown (script):

/* For the purpose of this exercise, filter the countries so that we only
add Australia and USA */

var country = ROW.value;

if ((country == "AUS") || (country == "USA"))
{
 ENV.returnValue = ROW.text;
}
else
{
 ENV.returnValue = null;
}

onSelectValueChanged (script):

/* Set the country field value first and then refresh the state drop down.
Refreshing the state drop down will cause it to be reloaded from the table
data triggering the onFillDropDown event. Because now the country has
changed, the state drop down will only fill the states according to the
changed value of country */

FIELD.setValue(ROW.value);
FIELDS("Employee_State").refresh();

Remarks:

To avoid the Drop Down overlapping part of the input fields you can set the font size in the Drop Down's style

property. For example, you can set it to xx-small:

In this picture we changed the size of the States but not the Country:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 277
of 407 407

Example – Two level drop down

Start Point
The shipped aXes demonstration screen named XHRRPGTRN_Maint is used.
The State field is Employee_State:

Result
States appear as children of the Country:

Steps

Use the same table as the one used for the Dynamically refreshing a drop down without server
interaction example.
Edit static_tables.txt and add two rows:

One before the first row containing the Australian States and another one before the first row of US States:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 278
of 407 407

 {optgroup="Australian States"},
 {value="ACT",text="Canberra", countryCode="AUS"},
 {value="NSW",text="New South Wales", countryCode="AUS"},
 {value="QLD",text="Queensland", countryCode="AUS"},
 {value="NT",text="Northern Territory", countryCode="AUS"},
 {value="SA",text="South Australia", countryCode="AUS"},
 {value="VIC",text="Victoria", countryCode="AUS"},
 {value="WA",text="Western Australia", countryCode="AUS"},
 {value="TAS",text="Tasmania", countryCode="AUS"},
 {optgroup="United States"},
 {value="AK",text="Alaska", countryCode="USA"},
 {value="AL",text="Alabama", countryCode="USA"},
 {value="AR",text="Arkansas", countryCode="USA"},
 {value="AS",text="American Samoa", countryCode="USA"},
 {value="AZ",text="Arizona", countryCode="USA"},
 {value="CA",text="California", countryCode="USA"},
 {value="CO",text="Colorado", countryCode="USA"},
 {value="CT",text="Connecticut", countryCode="USA"},
 {value="DC",text="District of Columbia", countryCode="USA"},
 {value="DE",text="Delaware", countryCode="USA"},
 {value="FL",text="Florida", countryCode="USA"},
 {value="GA",text="Georgia", countryCode="USA"},
 {value="GU",text="Guam", countryCode="USA"},
 {value="HI",text="Hawaii", countryCode="USA"},
 {value="IA",text="Iowa", countryCode="USA"},
 {value="ID",text="Idaho", countryCode="USA"},
 {value="IL",text="Illinois", countryCode="USA"},
 {value="IN",text="Indiana", countryCode="USA"},
 {value="KS",text="Kansas", countryCode="USA"},
 {value="KY",text="Kentucky", countryCode="USA"},
 {value="LA",text="Louisiana", countryCode="USA"},
 {value="MA",text="Massachusetts", countryCode="USA"},
 {value="MD",text="Maryland", countryCode="USA"},
 {value="ME",text="Maine", countryCode="USA"},
 {value="MI",text="Michigan", countryCode="USA"},
 {value="MN",text="Minnesota", countryCode="USA"},
 {value="MO",text="Missouri", countryCode="USA"},
 {value="MP",text="Northern Mariana Islands", countryCode="USA"},
 {value="MS",text="Mississippi", countryCode="USA"},
 {value="MT",text="Montana", countryCode="USA"},
 {value="NC",text="North Carolina", countryCode="USA"},
 {value="ND",text="North Dakota", countryCode="USA"},
 {value="NE",text="Nebraska", countryCode="USA"},
 {value="NH",text="New Hampshire", countryCode="USA"},
 {value="NJ",text="New Jersey", countryCode="USA"},
 {value="NM",text="New Mexico", countryCode="USA"},
 {value="NV",text="Nevada", countryCode="USA"},
 {value="NY",text="New York", countryCode="USA"},
 {value="OH",text="Ohio", countryCode="USA"},
 {value="OK",text="Oklahoma", countryCode="USA"},
 {value="OR",text="Oregon", countryCode="USA"},
 {value="PA",text="Pennsylvania", countryCode="USA"},
 {value="PR",text="Puerto Rico", countryCode="USA"},
 {value="RI",text="Rhode Island", countryCode="USA"},
 {value="SC",text="South Carolina", countryCode="USA"},
 {value="SD",text="South Dakota", countryCode="USA"},
 {value="TN",text="Tennessee", countryCode="USA"},
 {value="TX",text="Texas", countryCode="USA"},
 {value="UM",text="United States Minor Outlying Islands", countryCode="USA"},
 {value="UT",text="Utah", countryCode="USA"},
 {value="VA",text="Virginia", countryCode="USA"},
 {value="VI",text="Virgin Islands", countryCode="USA"},
 {value="VT",text="Vermont", countryCode="USA"},
 {value="WA",text="Washington", countryCode="USA"},
 {value="WI",text="Wisconsin", countryCode="USA"},
 {value="WV",text="West Virginia", countryCode="USA"},
 {value="WY",text="Wyoming", countryCode="USA"},
 },
};

 Employee_State was selected and changed to be a Drop Down.

 These properties were then set in the Drop Down eXtension:

dataSourceType:

 Static Table

 tableName:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 279
of 407 407

 US_OZ_State

onFillDropDown (script):

if (ROW.optgroup != null)
{
 ENV.returnValue = null;
}
else
{
 ENV.returnValue = ROW.text;
}

An example of achieving the same but with the data sourced from an xml file:

<?xml version="1.0" encoding="iso-8859-1"?>

<states>
 <row>
 <optgroup>US States</optgroup>
 </row>
 <row>
 <code>AK</code>
 <desc >Alaska</desc>
 </row>
 <row>
 <code>NE</code>
 <desc>Nebraska</desc>
 </row>
 <row>
 <optgroup>Australian States</optgroup>
 </row>
 <row>
 <code>ACT</code>
 <desc>Canberra</desc>
 </row>
 <row>
 <code>QLD</code>
 <desc>Queensland</desc>
 </row>
</states>

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 280
of 407 407

Example – Using a drop down as subfile option field

Start Point
A screen like Work With Spool Files:

Result
The option fields are turned into drop downs to make it simpler to select.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 281
of 407 407

Steps

1) Add this table definition to your tables_static.txt:

 DefineObjectInstance {

 className = "StaticTable",
 name = "WrkSplF_Options",
 source = "inline",
 rows = {
 {value="",text=""},
 {value="1",text="Snd"},
 {value="2",text="Chg"},
 {value="3",text="Hold"},
 {value="4",text="Del"},
 {value="5",text="Dsp"},
 {value="6",text="Rls"},
 {value="7",text="Msgs"},
 {value="8",text="Attr"},
 {value="9",text="Prt Sts"},
 },

 };

2) Repeat this step for each of the Opt fields ONLY IN THE FIRST PAGE of the screen:

 Make the field a Drop Down and size it appropiately
 Set the dataSourceType to Static Table and the tableName to WrkSplF_Options
 Set onSelectValueChanged to

if (ROW.value != "") {FIELD.setValue(ROW.value); SENDKEY("Enter");

3) Save the screen.

You can now use the drop down options to work with a file.

Note that in a real application you will need to hide the instructions on the top of the display because they
are no longer valid.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 282
of 407 407

Example – Dynamic Google Chart 1

By using this extension you will be subject to the Google Terms of
Service as outlined in http://code.google.com/apis/chart/tems.html

Start Point

You can start with any screen because charts are not associated with fields. For the sake of this example we
will start with a blank screen.

Result
A Pie Google Chart showing the number of employees by department. They use data from static tables that
were created by direct scripting (instead of being loaded from the server):

Steps

http://code.google.com/apis/chart/tems.html

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 283
of 407 407

Add this table definition to your tables_static.txt:

DefineObjectInstance {
 className = "StaticTable",
 name = "XHREmployee",
 source = "sql",
 selectSQLcommand = "XHRDEPCDE from AXESDEMO.XHREMPTN order by XHRDEPCDE",
 resultColumnNames = {"deptCode"},
};

Add a new element, set its extension type as Google Chart and size it.
Now set these extension properties:

tableName: Employees_in_Dept
onLoadChart – intermediate version:

/* Load the static tables file */
TABLEMANAGER.loadStaticTables(USERENV.staticTablesFile);

/* The department table returned by the selectSQL filled with departments */
var deptTable = TABLEMANAGER.getTable("XHREmployee");

/* The table to be filled manually based on the department table */
var chartTable = TABLEMANAGER.getTable("Employees_in_Dept");

/* Get the total number of table rows which is the same as the total number of employee */
var iRows = deptTable.childCount();

var savDept = "";
var iEmployeeInDept = 0;
var oChild;

/* Traverse the static table, count the number of employees for each department and insert a
child row into the table nominated in the tableName property whenever a change of department
is detected. Note the order by in the selectSQL statement makes sure the records are ordered
by the department code */

for (var i = 0; i < iRows; i++)
{
 oChild = deptTable.child(i);
 if (oChild.deptCode != savDept)
 {
 if (savDept != "")
 {
 chartTable.insertChild({chartData:iEmployeeInDept.toString(),chartLabel:savDept});
 }
 savDept = oChild.deptCode;
 iEmployeeInDept = 1;
 }
 else
 {
 iEmployeeInDept++;
 }
}

Title: Number+of+Employees|by+Department

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 284
of 407 407

INTERMEDIATE RESULT 1:

To add colors you could add the RGB hex color codes to the colors property. In this case because there are 5
departments you would add 5 color codes like this:

colors: 00AA00,FFCC00,DDCCFF,ABCDEF,0000AA

However, since we don't really know how many departments until the query is executed, the proper way to do
it is inside the for loop when the department changes. To do this we need an array of colors to select from, a
positional index, a variable to store the entire color string and a variable for the comma separator:

/* array of colors to set to the different departments. It should contain enough colors so
that no color is repeated. */
var arrayColors = ["00AA00", "FFCC00" , "DDCCFF", "ABCDEF", "0000AA", "84871C", "FF9900"];
var iColorIndex = 0;
var chco = "";
var colorSep = "";

Now we modify the logic inside the for loop to start building the color string:

/* Load the static tables file */
TABLEMANAGER.loadStaticTables(USERENV.staticTablesFile);

/* The department table returned by the selectSQL filled with departments */
var deptTable = TABLEMANAGER.getTable("XHREmployee");

/* The table to be filled manually based on the department table */
var chartTable = TABLEMANAGER.getTable("Employees_in_Dept");

/* Get the total number of table rows which is the same as the total number of employee */
var iRows = deptTable.childCount();

var savDept = "";
var iEmployeeInDept = 0;
var oChild;

/* Traverse the static table, count the number of employees for each department and insert a
child row into the table nominated in the tableName property whenever a change of department

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 285
of 407 407

is detected. Note the order by in the selectSQL statement makes sure the records are ordered
by the department code */

for (var i = 0; i < iRows; i++)
{
 oChild = deptTable.child(i);
 if (oChild.deptCode != savDept)
 {
 if (savDept != "")
 {
 chartTable.insertChild({chartData:iEmployeeInDept.toString(),chartLabel:savDept});

 /* Make sure we are not passed the last color and if we have start from the first one */
 if (iColorIndex >= arrayColors.length)
 {
 iColorIndex = 0;
 }
 chco += colorSep + arrayColors[iColorIndex];
 iColorIndex++;
 /* Change the color separator so from now one it puts a comma before the next color */
 colorSep = ",";
 }
 savDept = oChild.deptCode;
 iEmployeeInDept = 1;
 }
 else
 {
 iEmployeeInDept++;
 }
}

Then we must set the colors property:

FIELD.setProperty("colors", chco);

The entire script should now look something like this:

/* Load the static tables file */
TABLEMANAGER.loadStaticTables(USERENV.staticTablesFile);

/* The department table returned by the selectSQL filled with departments */
var deptTable = TABLEMANAGER.getTable("XHREmployee");

/* The table to be filled manually based on the department table */
var chartTable = TABLEMANAGER.getTable("Employees_in_Dept");

/* Get the total number of table rows which is the same as the total number of employee */
var iRows = deptTable.childCount();

var savDept = "";
var iEmployeeInDept = 0;
var oChild;

/* array of colors to set to the different departments. It should contain enough colors so
that no color is repeated. */
var arrayColors = ["00AA00", "FFCC00" , "DDCCFF", "ABCDEF", "0000AA", "84871C", "FF9900"];
var iColorIndex = 0;
var chco = "";
var colorSep = "";

/* Traverse the static table, count the number of employees for each department and insert a
child row into the table nominated in the tableName property whenever a change of department

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 286
of 407 407

is detected. Note the order by in the selectSQL statement makes sure the records are ordered
by the department code */

for (var i = 0; i < iRows; i++)
{
 oChild = deptTable.child(i);
 if (oChild.deptCode != savDept)
 {
 if (savDept != "")
 {
 chartTable.insertChild({chartData:iEmployeeInDept.toString(),chartLabel:savDept});
 /* Make sure we are not passed the last color and if we have start from the first one
*/
 if (iColorIndex >= arrayColors.length)
 {
 iColorIndex = 0;
 }
 chco += colorSep + arrayColors[iColorIndex];
 iColorIndex++;
 /* Change the color separator so from now one it puts a comma before the next color */
 colorSep = ",";
 }
 savDept = oChild.deptCode;
 iEmployeeInDept = 1;
 }
 else
 {
 iEmployeeInDept++;
 }
}

FIELD.setProperty("colors", chco);

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 287
of 407 407

INTERMEDIATE RESULT 2:

The next modification is to make the chart show chart legends to show the number of employees in each
department. The logic is very similar to the one used for the colors …

var chdl = "";
var chdlSep = "";

… store the number of employees in the for loop …

for (var i = 0; i < iRows; i++)
{
 oChild = deptTable.child(i);
 if (oChild.deptCode != savDept)
 {
 if (savDept != "")
 {
 chartTable.insertChild({chartData:iEmployeeInDept.toString(),chartLabel:savDept});

 /* Make sure we are not passed the last color and if we have start from the first one */
 if (iColorIndex >= arrayColors.length)
 {
 iColorIndex = 0;
 }
 chco += colorSep + arrayColors[iColorIndex];
 iColorIndex++;
 /* Change the color separator so from now one it puts a comma before the next color */
 colorSep = ",";
 /* Legends string with the number of employees. The separator here is the pipe char */
 chdl += chdlSep + iEmployeeInDept.toString();
 chdlSep = "|";

 }
 savDept = oChild.deptCode;
 iEmployeeInDept = 1;
 }
 else
 {
 iEmployeeInDept++;
 }
}

… and set the property

FIELD.setProperty("legends", chdl);

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 288
of 407 407

INTERMEDIATE RESULT 3:

Note that Google Chart doesn't scale the data by default. Hence any value greater than 100 appears as
100. In the above chart there is no visual clue that for example the MANU department has more than four
times the number of employees than IS (400 vs. 92). The final step then is to make the chart reflect the
real proportions. First add a variable:

var percent;

Then make the calculation and modify the insertChild() call to use the calculated value:

 percent = (iEmployeeInDept * 100) / iRows;
 chartTable.insertChild({chartData:percent.toString(),chartLabel:savDept});

The final version of the script should look something like this:

/* Load the static tables file */
TABLEMANAGER.loadStaticTables(USERENV.staticTablesFile);

/* The department table returned by the selectSQL filled with departments */
var deptTable = TABLEMANAGER.getTable("XHREmployee");

/* The table to be filled manually based on the department table */
var chartTable = TABLEMANAGER.getTable("Employees_in_Dept");

/* Get the total number of table rows which is the same as the total number of employee */
var iRows = deptTable.childCount();

var savDept = "";
var iEmployeeInDept = 0;
var oChild;

/* array of colors to set to the different departments. It should contain enough colors so
that no color is repeated. */
var arrayColors = ["00AA00", "FFCC00" , "DDCCFF", "ABCDEF", "0000AA", "84871C", "FF9900"];
var iColorIndex = 0;
var chco = "";
var colorSep = "";
var chdl = "";
var chdlSep = "";
var percent;
/* Traverse the static table, count the number of employees for each department and insert a
child row into the table nominated in the tableName property whenever a change of department

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 289
of 407 407

is detected. Note the order by in the selectSQL statement makes sure the records are ordered
by the department code */

for (var i = 0; i < iRows; i++)
{
 oChild = deptTable.child(i);
 if (oChild.deptCode != savDept)
 {
 if (savDept != "")
 {
 percent = (iEmployeeInDept * 100) / iRows;
 chartTable.insertChild({chartData:percent.toString(),chartLabel:savDept});
 /* Make sure we are not passed the last color and if we have start from the first one */
 if (iColorIndex >= arrayColors.length)
 {
 iColorIndex = 0;
 }
 chco += colorSep + arrayColors[iColorIndex];
 iColorIndex++;
 /* Change the color separator so from now one it puts a comma before the next color */
 colorSep = ",";
 chdl += chdlSep + iEmployeeInDept.toString();
 chdlSep = "|";
 }
 savDept = oChild.deptCode;
 iEmployeeInDept = 1;
 }
 else
 {
 iEmployeeInDept++;
 }
}

FIELD.setProperty("colors", chco);
FIELD.setProperty("legends", chdl);

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 290
of 407 407

FINAL RESULT:

To visualize the PIE chart as a BAR one, change the type property from p to bvs:

The chart should now look something like this:

The colors are all the same because for this type of chart, the character used to separate the colors inside the
color string (chco=) is a pipe char instead of a comma.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 291
of 407 407

In the onLoadChart script modify this line

colorSep = ",";

To this line

colorSep = "|";

Observations
To make charting more flexible and reusable it is strongly recommended to create a function in USERENV.js
so that you are able to parameterize variables according to the chart type. Using the above as an example, you
could pass this function a color separator ("," or "|") so that you don't have to change your script.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 292
of 407 407

Example – Dynamic Google Chart 2

By using this extension you will be subject to the Google Terms of
Service as outlined in http://code.google.com/apis/chart/tems.html

Start Point

Please – do the Dynamic Google Chart 1 tutorial before this one. This tutorial assumes that you
have done it.

In this tutorial we will generate the same chart by generating the entire URL parameter string. Start with a
blank screen:

Result
A Pie Google Chart showing the number of employees by department. They use data from static tables that
were created by direct scripting (instead of being loaded from the server):

http://code.google.com/apis/chart/tems.html

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 293
of 407 407

Steps

 Add a new element, set its extension type as Google Chart and size it.
Now set these extension properties:

sourceParmString: User String
tableName: Employees_in_Dept
onLoadChart:

/* Load the static tables file */
TABLEMANAGER.loadStaticTables(USERENV.staticTablesFile);

/* The department table returned by the selectSQL filled with departments */
var deptTable = TABLEMANAGER.getTable("XHREmployee");

/* Get the total number of table rows which is the same as the total number of employee */
var iRows = deptTable.childCount();
var oChild;
var savDept = "";
var iEmployeeInDept = 0;

/* array of colors to set to the different departments. It should contain enough colors so
that no color is repeated. */
var arrayColors = ["00AA00", "FFCC00" , "DDCCFF", "ABCDEF", "0000AA", "84871C", "FF9900"];
var iColorIndex = 0;
var chco = "chco=";
var colorSep = "";
/* Variable to store the legends */
var chdl = "chdl=";
var chdlSep = "";
/* Variable to store the labels */
var chl = "chl=";
var chlSep = "";
/* Variable to store the data */
var chd = "chd=t:";
var chdSep = "";
var sURLParms = "chs=" + FIELD.getSize().width + "x" + FIELD.getSize().height+
"&cht=p&chtt=Number+of+Employees|by+Department";

var percent;
/* Traverse the static table, count the number of employees for each department and insert a
child row into the table nominated in the tableName property whenever a change of department

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 294
of 407 407

is detected. Note the order by in the selectSQL statement makes sure the records are ordered
by the department code */

for (var i = 0; i < iRows; i++)
{
 oChild = deptTable.child(i);
 if (oChild.deptCode != savDept)
 {
 if (savDept != "")
 {
 percent = (iEmployeeInDept * 100) / iRows;
 chd += chdSep + percent.toString();
 chdSep = ",";
 chl += chlSep + savDept;
 chlSep = "|";
 /* Make sure we are not passed the last color and if we have start from the first one */
 if (iColorIndex >= arrayColors.length)
 {
 iColorIndex = 0;
 }
 chco += colorSep + arrayColors[iColorIndex];
 iColorIndex++;
 /* Change the color separator so from now one it puts a comma before the next color */
 colorSep = ",";
 chdl += chdlSep + iEmployeeInDept.toString();
 chdlSep = "|";
 }
 savDept = oChild.deptCode;
 iEmployeeInDept = 1;
 }
 else
 {
 iEmployeeInDept++;
 }
}

sURLParms += "&" + chd + "&" + chl + "&" + chco + "&" + chdl;
FIELD.setProperty("userString", sURLParms);

FINAL RESULT:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 295
of 407 407

Example – Creating Static Tables by Scripting

Start Point
The System i Main Menu, identified as screen MAIN, with the entry field named CommandLine:

Result
A dropdown and a push button are added to the MAIN screen. They use data from static tables that were
created by direct scripting (instead of being loaded from the server):

Steps

 The application properties are viewed

and then edited

 These properties were then set in the application's Basic properties:

onApplicationStart

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 296
of 407 407

var t1 = TABLEMANAGER.getTable("TestTable1");

t1.insertChild({text:"Copy File",value:"CPYF"});
t1.insertChild({text:"Call Program",value:"CALL"});
t1.insertChild({text:"This Job",value:"WRKJOB"});
t1.insertChild({text:"System Status",value:"WRKSYSSTS"});

var t2 = TABLEMANAGER.getTable("TestTable2");

t2.insertChild({code:"SAL",desc:"Sales"});
t2.insertChild({code:"MKT",desc:"Sales"});
t2.insertChild({code:"ADM",desc:"Administration"});

 The application properties were then saved.

 A Push Button is added to the MAIN screen as a new element.

These properties were set:

caption

Iterate Table 2

onClick

var t2 = TABLEMANAGER.getTable("TestTable2");
var iLimit = t2.childCount();
var sMessage = "";
for (var i = 0; i < iLimit; i++)
{
 var row = t2.child(i);
 sMessage += row.code + " - " + row.desc + "\r";
}
window.alert(sMessage);

 A Drop Down is added to the MAIN screen as a new element.

These properties were set:

dataSourceType

Static Table

tableName

TestTable1

onSelectedValueChanged

var field = FIELDS("CommandLine");
field.setValue(ROW.value);

Observations
The drop down is filled from a static table named TestTable1. When an entry is selected it sets the
CommandLine field on the MAIN screen to the selected table row's value property/column.

The push button reads all the entries (children) in the static table named TestTable2. It formats a string from
each rows code and desc values - presenting the result like this:

The crux of this example is the application start up logic that creates the static tables TestTable1 and
TestTable2 by executing script. The annotated logic is:

Get a reference to a table named TestTable1, creating it if it does not exist:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 297
of 407 407

var t1 = TABLEMANAGER.getTable("TestTable1");

Create four rows (children) in the table where each child has properties/columns named text and value :

t1.insertChild({text:"Copy File",value:"CPYF"});
t1.insertChild({text:"Call Program",value:"CALL"});
t1.insertChild({text:"This Job",value:"WRKJOB"});
t1.insertChild({text:"System Status",value:"WRKSYSSTS"});

Get a reference to a table named TestTable2, creating it if it does not exist:

var t2 = TABLEMANAGER.getTable("TestTable2");

Create three rows (children) in the table - each child has properties/columns named code and desc :

t2.insertChild({code:"SAL",desc:"Sales"});
t2.insertChild({code:"MKT",desc:"Sales"});
t2.insertChild({code:"ADM",desc:"Administration"});

Example – Working with 5250 Cursor
Since many 5250 applications are heavily depending on the cursor for its navigation, a mechanism to control

the position the cursor in the back-end 5250 program is required.

Supposing that you have an enrol employee screen, and the department field has a prompt function that
displays the list of available departments.

When the prompt function is executed on the Department Code field, a screen showing the department list
will appear:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 298
of 407 407

To select a department in a 5250 terminal, the user will have to position the cursor on the correct line to select
a department. However this will not work for a web-based application, so we need to programmatically instruct
the program on the back-end to move the cursor to a specific location when the user clicks on a department in

order to let the program know which department is selected.

The steps below show one way to do this.

Switch the caption property of the hyperlink to scripting mode by clicking on the pencil icon.
Type the following script into the script editor:

FIELD.getValue()

This instructs the hyperlink to display the original 5250 text as the link’s text.

Then type in the following script in the onClick event of the hyperlink:

FIELD.set5250Cursor();
SENDKEY("Enter");

FIELD.set5250Cursor method will move the logical cursor to the element that is clicked. It then simulates an
ENTER keystroke.

Example – Multi-lingual Text

Start Point
The System i Main Menu, identified as screen MAIN, with the entry field named CommandLine:

Apply a hyperlink eXtension to this column

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 299
of 407 407

Result
A push button is added to the MAIN screen. When axes is run in the default language or with &lang=en added
to the url, the button caption and the alert issued by clicking the button use english captions.

When &lang=xx is added to the url, the xx language caption is shown for the button and in the alert:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 300
of 407 407

Steps

 Edit the screen properties and add a new element

 Set the element's visualization to push button

 Set its properties as shown:

(note that the caption property is a script, not a value)

 Edit the file in axes/ts/lang called Custs_Text_en.txt

Add the following entries just before the last line:

"Button1.Text" : "English Button",
"Button1.Message" : "English message from button 1",

 Create a new file in axes/ts/lang called Custs_Text_xx.txt (Copy it from Custs_Text_en.txt)

Edit it and modify the entries you added in the previous step to be:

"Button1.Text" : "xx language Button",

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 301
of 407 407

"Button1.Message" : "xx language message from button 1",

 From a command line on the iSeries, check the authority to the file, using wrklnk 'axes/ts/lang/*', and

then option 9 against the entry for Custs_Text_xx.txt.

Ensure that the authority for *PUBLIC is *R (and only *R).

 Ensure all your changes are saved, and restart axes in run mode, and sign on.

On the main screen, the button should show the english caption: English Button

And when the button is clicked, the alert should show: "English message from button 1"

 Restart axes in run mode, but add &lang=xx to the url

On the main screen, the button should show the xx language caption: xx language Button

And when the button is clicked, the alert should show: "xx language message from button 1"

Example – Visibility control (over a screen element - dynamic)

Start Point
The System i Main Menu, identified as screen MAIN

Result
A push button is added to the MAIN screen. When the button is clicked it makes the screen title element
("System i Main Menu") disappear.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 302
of 407 407

Steps
 Start axes in developer mode, and go to the first screen.

 Click on the "System i Main Menu" element on the screen. (The screen title element)

 Name the element "screenTitle". (Now that the element is named, it can be referenced by other elements
on the screen) Save your changes.

 Click on the Edit Screen button and Add a new element

 Set the new element's visualization to push button

 Set the push button's caption property to:

Make title invisible

 Set the onClick property to:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 303
of 407 407

var TitleField = FIELDS("screenTitle");
TitleField.setProperty("visible", false);
TitleField.refresh();

 Save your changes. You should now be able to click the button and make the screen title disappear

Observations

In the onClick code:

var TitleField = FIELDS("screenTitle");

is allowing the button element to work with the screen title element, by accessing the
FIELDS collection, using the name "screenTitle" as the key.

TitleField.setProperty("visible", false);

All elements have a visible property, so set the screen title's visible property to false,
using this method.

TitleField.refresh();

When you change a property of an element that changes its appearance, you usually
need to tell the element to re-draw itself. This is done with the .refresh() method.

Example – Using a date format not available in the Date eXtension

Start Point
The Maintain Employee Information subfile identified as screen XHRRPGTRN_Select.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 304
of 407 407

Result
Date of Birth displaying in format YY/MM/DD not available in the list of extension formats:

Steps

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 305
of 407 407

 Edit the language defaults file /ts/lang/Texts_Cust_xx.txt where xx is the language code.

 Find the dateFormatDisplay setting. Change the shipped default from:

"dateFormatDisplay" : "d/mm/yy",

to

"dateFormatDisplay" : "y/mm/dd",

 Save and close the file.

 Clear your browser cache to pick up the new file version.

 Start axes in developer mode go to the Maintain Employee screen, and edit the screen.

 Select one of the date fields in the subfile and change it to use the Date eXtension.

 Save the screen. YY/MM/DD is now your language default dateFormatDisplay.

 Likewise, if most of your programs use YY/MM/DD to store dates but DD/MM/YY to display them, leave
the dateFormatDisplay with its shipped default value and change the dateFormatServer value.

Example – Visibility control over a new element - dynamic

Start Point
The System i Main Menu, identified as screen MAIN

Result
Two push buttons are added to the MAIN screen. When the second button is clicked it makes the first button
disappear.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 306
of 407 407

Steps
 Start axes in developer mode, and go to the first screen, and edit the screen.

 Add a new element and make it a pushbutton

Make its caption property "Button1"

Make its name property "Button1" (this allows other elements on the screen to set its properties)

 Add another element, and make it a pushbutton.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 307
of 407 407

Make its caption property "Make Button1 invisible"

Make its onClick property:

var Button1 = FIELDS("Button1");
Button1.setProperty("visible", false);
Button1.refresh();

 Save your changes. You should now be able to click the second button and make the first button disappear

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 12 - FAQ and Examples, Page 308
of 407 407

Example – Dynamic Tables using a condition that evaluates a numeric
value

Choose any screen and add:

1. A New Element type Label. Set its caption to "Salaries greater than"

2. A New Element. Leave it with the Default Visualization. Set its name to Request_Salary

3. A New Element type DropDown. Set its name to Employees

Set its dataSourceType to Dynamic.
Set its onFillDropDown property to: ROW.lastName + " (" + ROW.salary + ")";
Set its SQL Query Name to EmployeeSalaries
Set its SQL Variables property to:

var salaryValue = parseFloat(FIELDS("Request_Salary").getValue());

if ((isNaN(salaryValue)) || (typeof(salaryValue) != "number"))
{
 ENV.SQL.SQLVariableSalary = 0;
}
else
{
 ENV.SQL.SQLVariableSalary = salaryValue;
}

4. A New Element type Push Button:

Set its caption to Select Employees
Set its onClick property to FIELDS("Employees").refresh();

The screen with the New Elements should look something like this:

5. Edit your Dynamic Tables file and add this table:

 DefineObjectInstance {
 className = "DynamicTable",
 name = "EmployeeSalaries",
 source = "sql",
 selectSQLcommand = "XHRSURNME,XHRGIVNME, XHRSALARY from AXESDEMO.XHREMPTN where
XHRSALARY > ':SQLVariableSalary' ",
 resultColumnNames = { "lastName", "firstName", "salary"},
 };

onFillDropDown:

ROW.lastName + " (" + ROW.salary + ")";
EmployeeSalaries
sqlVariables:
ENV.SQL.SQLVariableSalary

DefineObjectInstance {
className = "DynamicTable",
name = "EmployeeSalaries",
source = "sql",
selectSQLcommand = "XHRSURNME,XHRGIVNME, XHRSALARY
from AXESDEMO.XHREMPTN where XHRSALARY >
':SQLVariableSalary' ",
resultColumnNames = {"lastName","firstName","salary"},

};

eXtensions Tutorial 13 - Smart Phone Applications

Prerequisites for Completing this Tutorial

To follow this tutorial you must have:

1. Completed aXes tutorials 1 through 4.

2. The ability to use the IBM i operating system, 5250 DDS and perform RPG programming.

Overview and Objectives
The following material provides the foundations for developing a simple generic framework for building Smart
Phone applications.

To do this it uses a generic approach and generic implementation techniques.

The objective of this tutorial is to help you understand the basics of a simple generic framework for Smart
Phone applications so that you can replace, evolve, extend or customize it to create your own specific
framework.

Getting Started - Check List of Objects You Need
You need to have the AXESDEMO library installed on your system.

Library AXESDEMO must contain these objects:

Name Type /
Attribute

Description Check

QTUTORIAL *FILE / PF RPG, DDS and CL source code for examples
TU4DISPLAY *FILE / DSPF Main Display File
TU4DRIVER *PGM / RPGLE Main Driver Program
TU4LOGON *PGM / CLP Direct logon program – calls TU4DRIVER
TU4CUSTM2P *PGM / RPGLE Customer Inquiry – Method 2 example program
TU4CUSTM3D *FILE / DSPF Customer Inquiry – Method 3 example display file
TU4CUSTM3P *PGM / RPGLE Customer Inquiry – Method 3 example program
AXMBCUST *FILE / PF Customer File - DDS is in QDDSSRC
AXMBPART *FILE / PF Spare Parts File – DDS is in QDDSSRC

Also complete this checklist:

Check to be performed Check Passed
aXes development environment is installed and operational on development PC
aXes tutorials 1 through 4 completed
aXes version shows as 1.35.005 (or later). Check the bottom right of aXes-TS or
aXes-TS2 login screen shows this (or a higher version number):

Safari or Google Chrome browser installed on development PC
Safari – http://www.apple.com/safari/download/
Google - http://www.google.com/chrome

Documentation Library

http://www.apple.com/safari/download/
http://www.google.com/chrome

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 310 of 407 407

Implementing a Smart Phone Application

About This Tutorial
The following tutorial steps are designed to help you understand a variety of techniques that may be useful
when implementing a smart phone application.

These tutorial steps do not produce a holistic result – a real smart phone application that you could use in a
production environment – instead they produce a set of results that show you how to do various things that
you would want to do in a real application. They should provide you with raw material that you can consolidate
and extrapolate into a real application of your own design.

Create a new aXes project
To get started on this tutorial, log on to aXes as a developer and create a new project.
All the following tutorial steps should be performed within that project.

Setting up shared code in the USERENV.JS file (USERENV object)
The USERENV.JS file and the USERENV JavaScript object are important concepts in reusing logic and in
creating single maintenance points for design and layout changes.

In this tutorial create a sub-object of USERENV called USERENV.MOBILE by copying and pasting this starter
code inside your project's USERENV object:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 311 of 407 407

 /* === */
 /* Smart Phone Manager Object - all references are USERENV.MOBILE.xxxxxx */
 /* === */

 MOBILE :
 {
 /* _ prefix denote private objects that should not be referenced by eXtension
scripts */

 _isiPhone : false,
 _screenSendEnabled : false,
 _ScreenFields :
{NEXTACTION:"ifld10d",INFO_1:"ifld202",INFO_2:"ifld302",INFO_3:"ifld402",INFO_4:"ifld502",INF
O_5:"ifld602",

INFO_6:"ifld702",INFO_7:"ifld802",INFO_8:"ifld902",INFO_9:"iflda02",INFO_10:"ifldb02"},

 /* Exposed properties and methods that may be referenced by eXtension scripts */

 currentCUSTOMER : null,

 deviceWidth : function(env) { env.returnValue = 320; },
 deviceHeight : function(env) { env.returnValue = 430; },
 deviceZoom : function(env) { if (USERENV.MOBILE._isiPhone)
env.returnValue = -1; else env.returnValue = 100; },
 lockZoom : function(env) { env.returnValue = true; },

 signOn : function(env)
 {
 USERENV.MOBILE._isiPhone = (navigator.userAgent.match(/iPhone|iPod/) !=
null);
 env.SHOWAXESMENUBAR(false);
 env.SHOWAXESSTATUSBAR(false);
 },

 signOff : function(env)
 {
 env.SHOWAXESMENUBAR(true);
 env.SHOWAXESSTATUSBAR(true);
 USERENV.MOBILE._screenSendEnabled = false;
 },

 onArrive : function(env)
 {
 USERENV.MOBILE.screenSendEnabled = false;
 },

 onLeave : function(env)
 {
 env.returnValue = USERENV.MOBILE._screenSendEnabled;
 },

 setINFO : function(env,index,value)
 {
 var id = USERENV.MOBILE._ScreenFields["INFO_" + index.toString()];
 if (id == null) { alert("USERENV.MOBILE.setINFO encountered an invalid index
value."); return; };
 var element = AXES.currentForm.getElementById(id);
 if (element == null) {alert("USERENV.MOBILE.setINFO cannot find specified
INFO_n field element on screen."); return; };
 element.setValue(value.toString());
 },

 getINFO : function(env,index,value)
 {
 var id = USERENV.MOBILE._ScreenFields["INFO_" + index.toString()];
 if (id == null) {alert("USERENV.MOBILE.getINFO encountered an invalid index
value."); return(""); };
 var element = AXES.currentForm.getElementById(id);
 if (element == null) {alert("USERENV.MOBILE.getINFO cannot find specified
INFO_n field element on screen."); return(""); };
 return(element.getValue());
 },

 gotoScreen : function(env,nextscreen)
 {
 if (nextscreen == null) nextscreen = "HOME";
 var nextaction =
AXES.currentForm.getElementById(USERENV.MOBILE._ScreenFields.NEXTACTION);
 if (nextaction == null) {alert("USERENV.MOBILE.gotoScreen cannot find
NEXTACTION field."); return };
 nextaction.setValue(nextscreen);
 for (var i = 2; i < arguments.length; i++) { USERENV.MOBILE.setINFO(env,(i-
1),arguments[i]); }
 USERENV.MOBILE._screenSendEnabled = true;
 env.SENDKEY("Enter");
 }

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 312 of 407 407

 }, /* <--- Note the comma */

 /* ================================= */
 /* End of Smart Phone Manager Object */
 /* ================================= */

Using centralized signOn() and signOff() logic
Your USERENV.MOBILE object contains functions signOn() and signOff().

Plug them into your project by editing your application properties so that they are called at the appropriate
times - like this:

The calls are

 USERENV.MOBILE.signOn(ENV);

and

 USERENV.MOBILE.signOff(ENV);

Save your project changes.

Set up Some Styles
Next you need to set up some base styles as part of your application.
Set them into your project by editing your application properties.
In this tutorial we are going to use these styles:

Which have these style property values:

Style Item Name Property Value to use (double check your values)

background

Background

#27282d

smallText

Font-Family
Font-Size
Color

Verdana
10pt
White

mediumText

Font-Family
Font-Size
Color

Verdana
10pt
White

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 313 of 407 407

largeText

Font-Family
Font-Size
Color

Verdana
10pt
White

xlargeText

Font-Family
Font-Size
Color

Verdana
10pt
White

errorMessage

Font-Family
Font-Size
Color

Verdana
10pt
Red

Define these base styles into your project and save your changes.

Setting up a HOME Screen

Log on as an aXes developer.

Add library AXESDEMO to your library list.

Call program TU4DRIVER – the tutorial 4 driver program written in free format ILE RPG. The source code for
this program is in source file QTUTORIAL in library AXESDEMO. It has no parameters.

The resulting 5250 display will look like this - which may seem a bit strange at first.

Identify this screen with the name HOME - the Suggest button will do this automatically or you can type the
name in:

Now click on the first field on the screen (an output field at line 1 position 2 containing the word "HOME") to
select it – name the screen field THISSCREEN.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 314 of 407 407

Make sure to check the identification box for this field so that it is used as part of the screen signature to
uniquely identify it.

Save your screen identification changes.

Now start customizing this screen.

Hook up the USERENV.MOBILE.onArrive() and USERENV.MOBILE.onLeave() functions like this:

Then add an Auto Zoom Screen Size extension to the screen and hook up all the USERENV.MOBILE sizing
functions - like this:

Now apply the background style created earlier to the whole screen:

Save your changes.

Next you need to hide every 5250 field on the screen.

You do this by selecting each field and un-checking its default visualization extension - like this:

When you save your changes you should see a completely blank screen.

This is a blank "virtual screen" canvas for you to start painting on:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 315 of 407 407

Make sure that your screen is this dark colour.

In the following steps we are going to insert white text onto it.

If you start inserting white text onto a white background things can become very confusing!

Now add a label eXtension to your screen captioned Home Screen.

Use the xlargeText base style for the label to make it use the large white font.

Then add a push button eXtension captioned Log Off to your screen.

The screen should now look something like this:

Change the onClick property of the push button to execute this script:

USERENV.MOBILE.gotoScreen(ENV,"EXIT");

The gotoScreen() function puts the string "EXIT" into the 5250 screen and sends the enter key. This tells the
driver program TU4DRIVER to end.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 316 of 407 407

Save your changes and then click the Log Off button – you should be returned to where you called the program
TU4DRIVER from.

Note: In a real application a program like TU4DRIVER would be called automatically when the user signs on -
so when TU4DRIVER ends the user would be logged off from the system. More on this later.

You should now be able to call up the TU4DRIVER program, which will display your HOME page, and then end it
again by clicking the Log Off button. Please ensure you can do this easily by repeating the process several
times before proceeding with this tutorial.

You have now created a Home Page for your application.

It is pretty sparse at the moment – however the following tutorial steps will show you how to add functionality
to it.

New Screen Checklist
For every new screen you define in this tutorial you should complete this check list:

Step Action Checked
1 The screen is named HOME, MESSAGE or VS_xxxxxxxx according to the name

displayed in output field at line 1 position 2 on screen.

2 Output field at line 1 position 2 named THISSCREEN has been checked as an
identification field

3 The THISSCREEN field at line 1 position 2 displays the same screen name as you
input in step 1 (i.e.: you have given the screen the correct name).

4 Screen identification details have been saved
5 Screen customization started
6 Screen onArrive and onLeave events execute correct USERENV.MOBILE functions:

onArrive USERENV.MOBILE.onArrive(ENV);
onLeave USERENV.MOBILE.onLeave(ENV);

7 Auto Zoom Screen Size has been set up like this:
(the properties need to be set to evaluate script mode)

width USERENV.MOBILE.deviceWidth(ENV);
height USERENV.MOBILE.deviceHeight(ENV);
zoom USERENV.MOBILE.deviceZoom(ENV);
lockZoom USERENV.MOBILE.lockZoom(ENV);

8 The base style backGround has been applied to whole screen:

9 All unwanted 5250 fields on the screen have been hidden from view by un-checking
their default visualization property:

10 Screen customization changes saved

Setting Up a Messages Screen
It's useful to have a generic messages screen in smart phone applications.

To set up a messages screen do the following:

Call program TU4DRIVER to display your Home Page.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 317 of 407 407

Add a new push button to your Home Page captioned Messages that calls a Message screen when clicked.

USERENV.MOBILE.gotoScreen(ENV,"MESSAGE");

Save your changes. Your home screen should now look something like this:

Click the Message button. The result should look like this:

This is a brand new blank canvas virtual screen (more about them later).

This screen should be named MESSAGE.

Complete the preceding New Screen Checklist to set this screen up for proper smart phone operations – you
should end up with a completely blank screen.

Now add a new label eXtension ("Messages") and two new push button eXtensions ("Home" and "Log Off") to
your messages screen.

The Home button should do this when clicked or touched:

 USERENV.MOBILE.gotoScreen(ENV,"HOME");

The Log Off button should do this when clicked or touched:

 USERENV.MOBILE.gotoScreen(ENV,"EXIT");

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 318 of 407 407

Your MESSAGE screen should now look like this:

Save your changes.

Now add a new label eXtension to the middle of your MESSAGE screen - something like this:

Use base style mediumText so that text is largish and easy to read.

Now change the text property of the label so that the content it is dynamically created.

The script you need to use is something like this:

var text = "";
for (var i = 1; i <= 10; i++) { text += USERENV.MOBILE.getINFO(ENV,i); }
if (text == "") text = "No messages are available at this time.";
ENV.returnValue = text;

What this script does is retrieve the contents of the hidden 5250 fields and assemble them into one long text
string. The resulting string is displayed in the label eXtension.

Save your changes.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 319 of 407 407

Your MESSAGE screen should now look like this:

You should now be able to start up the smart phone application by calling TU4DRIVER to display your HOME
screen.
From the HOME screen you can display the MESSAGE screen, and from there you can go back to the HOME
screen or EXIT (log off).

Please check you can do all these things before proceeding.

Presenting Information on a Smart Phone
The following tutorial steps are going to implement a Customer Details Inquiry using three different methods.

• Method 1: The inquiry is controlled by the client side scripting - using SQL to extract the customer details.

• Method 2: The inquiry is controlled by the client side scripting – but uses a service or subroutine style RPG

program to extract the required customer details.

• Method 3: The inquiry is initiated by client side scripting – but the presentation is performed and

ultimately managed and validated by a classic 5250 RPG program.

Obviously doing the same thing three different ways is not the objective of this tutorial.

The objective is to help you to understand the three main choices you have for common forms of information
presentation from a smart phone.

By completing these tutorial steps you should be able to compare and contrast the advantages and
disadvantages of each method – allowing you to make the best choice for real scenarios that you encounter.

Customer Inquiry

Start aXes as a developer and call program TU4DRIVER to display your HOME screen.

Add to your HOME screen:

• A group box eXtension,
• An input field eXtension (= default visualization)
• Three push buttons eXtensions

Position, style and label them like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 320 of 407 407

You need to set the style of the group box to use a white font.

Make sure that the input eXtension is:

• named CUSTOMERNUMBER
• has its maximumInputLength property set to 7

Like this:

Save your customization changes.

Optional Technical Notes:
Try clicking your three new Details push buttons - notice how nothing happens?
This is because your home screen has on onLeave function like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 321 of 407 407

If you look at the onArrive and onLeave functions in USERENV.MOBILE they do this:

 onArrive : function(env)
 {
 USERENV.MOBILE.screenSendEnabled = false;
 },

 onLeave : function(env)
 {
 env.returnValue = USERENV.MOBILE._screenSendEnabled;
 },

Every time a screen arrives the property USERENV.MOBILE.screenSendEnabled is set to false.

Every time the screen tries to leave (e.g.: when you click one of the new Details buttons) the current value of
USERENV.MOBILE._screenSendEnabled is returned back to the aXes driver to indicate whether to proceed or
not.

So when you click one of the new Details buttons the value being returned is false – so the request to send
details to the server (i.e.: leave this screen) is ignored.

The important matching code is in:

 gotoScreen : function(env,nextscreen)
 {
 <unrelated logic has been omitted>
 USERENV.MOBILE._screenSendEnabled = true;
 env.SENDKEY("Enter");
 }

When you invoke USERENV.MOBILE.gotoScreen() it sets the blocking property screenSendEnabled to true –
which means that the subsequent SENDKEY("Enter") will be sent back to the server.

In other words - the only way to submit a request to the server is by using USERENV.MOBILE.gotoScreen() –
any other scripted or user imitated use of the Enter key, function keys (which don’t exist on smart phones
anyway) are all ignored.

Method 1 - Using Client Logic Only
One of the ways you can define screens for presenting information is to use a virtual screen.

A virtual screen is one that does not need a specialized 5250 program on the server to create its visual content
or behaviour. The visual content typically comes from execution of scripts and server side SQL requests.

The screen content is assembled and controlled entirely by the client logic.

First, define a dynamic SQL request in your project's Dynamic Tables file. This defines an SQL command to find
a specified customer and creates an aXes table named AXMBCUST-INQUIRE:

 DefineObjectInstance {
 className = "DynamicTable",
 name = "AXMBCUST-INQUIRE",
 source = "sql",
 selectSQLcommand = "CUSTNUMBR,CUSTNAME,CUSTADDR,CUSTCITY,CUSTZIP,CUSTPHONE,CUSTEMAIL
from AXESDEMO.AXMBCUST where CUSTNUMBR = :SQLVariable_CUSTOMERNUMBER",
 resultColumnNames = {
"CUSTNUMBR","CUSTNAME","CUSTADDR","CUSTCITY","CUSTZIP","CUSTPHONE","CUSTEMAIL" },
 };

Save your changes and follow any restart instructions.

Now add this code to your Details – Meth 1 button's click handling:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 322 of 407 407

/* Default the things to do next */
var NEXTACTION = "MESSAGE";
var INFO_1 = "";

/* Get the customer number from the current screen as number */

var iCustNo = parseInt(FIELDS("CUSTOMERNUMBER").getValue(),10);

/* If the customer number is not valid goto message screen */

if ((isNaN(iCustNo))||(iCustNo < 1)||(iCustNo > 9999999))
{
 INFO_1 = "Customer number " + iCustNo.toString() + " is not a valid customer number.";
}
else
{

 /* Ask the manager to load the dynamic table, passing the customer number as an SQL
variable */
 TABLEMANAGER.loadDynamicTable("AXMBCUST-
INQUIRE",USERENV.dynamicTablesFile,{SQLVariable_CUSTOMERNUMBER:iCustNo.toString()});

 /* Get the first row from the aXes table produced by executing the SQL command */
 USERENV.MOBILE.currentCUSTOMER = TABLEMANAGER.getTable("AXMBCUST-INQUIRE").child(0);

 /* If not found then no customer with the number exists so go to message screen */
 if (USERENV.MOBILE.currentCUSTOMER == null)
 INFO_1 = "No customer with customer number " + iCustNo.toString() + " can be found on
the server.";

 else
 NEXTACTION = "VS_CUSTM1";
}

/* Proceed on to the next action/screen */

USERENV.MOBILE.gotoScreen(ENV,NEXTACTION,INFO_1);

This script:

• Retrieves and validates the CUSTOMERNUMBER entered by the user.
• Executes the SQL command defined in the dynamic SQL table (AXMBCUST-INQUIRE).
• If a row (record) is found it goes to the screen named VS_CUSTM1.
• If a row (record) cannot be found it goes to the screen named MESSAGE.

Try out your Details – Meth 1 by entering numbers 1111111 and 999999. They should cause your MESSAGE
screen to be displayed.

Now try out a valid number like 1 or 6.

The will cause a brand new screen named VS_CUSTM1 to be displayed, something like this:

You should recognize this type of screen now – it is a "blank" virtual screen that you have decided to name
VS_CUSTM1.

Set VS_CUSTM1 up in the normal manner by completing all the steps in the preceding New Screen Checklist
table.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 323 of 407 407

Then add a title Customer Details and also Home and Log Off buttons to your new VS_CUSTM1 screen so that
you have a blank canvas starting point like this:

The Log Off button's script should do this: USERENV.MOBILE.gotoScreen(ENV,"EXIT");
The Home button's script should do this: USERENV.MOBILE.gotoScreen(ENV,"HOME");

Check that your buttons work as expected.

Now add and style a label eXtension on the screen that has text property "Name:".

Then add and style another label eXtension beside it.

Set its text property by evaluating this script:

 ENV.returnValue = USERENV.MOBILE.currentCUSTOMER.CUSTNAME;

Save your changes.

You should see a customer name appear on the screen like this:

To recap – back on your home screen an SQL command was executed when a customer number was entered
and the Details – Meth 1 button was clicked.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 324 of 407 407

The SQL command produced an aXes table that had row elements named:

 "CUSTNUMBR","CUSTNAME","CUSTADDR","CUSTCITY","CUSTZIP","CUSTPHONE","CUSTEMAIL"

It also set a reference to the first aXes table row into the USERENV.MOBILE object like this:

 USERENV.MOBILE.currentCUSTOMER = TABLEMANAGER.getTable("AXMBCUST-INQUIRE").child(0);

So ….

 USERENV.MOBILE.currentCUSTOMER.CUSTNAME;

contains the name of the selected customer.

And equally ….

 USERENV.MOBILE.currentCUSTOMER.CUSTPHONE;

contains the customer's phone number.

So by using the information in USERENV.MOBILE.currentCUSTOMER you should be able to produce a screen
that looks something like this:

Save all your changes and test your inquiry with a number of different customer numbers.

You have now built a basic customer inquiry.

The key thing to understand is that you did this by using a virtual screen and by client side scripting alone.

You did not need to build any special-purpose server-side RPG programs to do this.

Time to try out the Real Thing via Desktop, Phone or Emulator

Before looking at the other two ways you can do a customer inquiry, it is probably worth going through how
you can test your application as the "real thing".

Up until now you have been running driver program TU4DRIVER by calling it from command entry. For
application development that is fine – but in a real application you would want to run it as soon as the user
logged on.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 325 of 407 407

In the AXESDEMO library there is a CL program called TU4LOGON that does this:

 PGM

 DCL VAR(&USER) TYPE(*CHAR) LEN(10)

 CHGJOB BRKMSG(*HOLD) STSMSG(*NONE)
 MONMSG MSGID(CPF0000 MCH0000)

 RTVJOBA USER(&USER)
 MONMSG MSGID(CPF0000 MCH0000)

 CLRMSGQ MSGQ(*WRKSTN)
 MONMSG MSGID(CPF0000 MCH0000)

 CLRMSGQ MSGQ(&USER)
 MONMSG MSGID(CPF0000 MCH0000)

 ADDLIBLE LIB(AXESDEMO)
 MONMSG MSGID(CPF0000 MCH0000)

 CALL PGM(TU4DRIVER)
 MONMSG MSGID(CPF0000 MCH0000)

 SIGNOFF

 ENDPGM

TU4LOGON can act as a simple user logon program for purposes of this tutorial.

You will probably need to duplicate program Tu4LOGON from library AXESDEMO into a library that it is in your
user profile's library list (e.g.: QGPL).

Next - typing in long URLs on a smart phone is error prone. You can improve this situation by making a simple
HTML document in the root of your aXes system.

For example, if you create a file named TUT4.HTML in the root of your aXes system containing this HTML ….

<html>
<head>
</head>
<body>
<script type="text/javascript">
window.location.replace("http://<aXesHost>/ts/ts2/mobile.html?definitionSet=<ppppp>&user=<uuu
uu>&program=TU4LOGON");
</script>
</body>
</html>

Where:

• <aXesHost> is your aXes Host
• <pppppp> is your project folder's name
• <uuuuuu> is your user profile name.

Note: After creating file TU4.HTML make sure that user *PUBLIC has *R (and only *R) access rights to the file.
Use the IBM i WRKLNK command to check and change this.

Now on your phone you can enter the simplified URL instead:

http://<axes Host>/tut4.html

One other thing worth noting is that ultimately it is mobile.html that is opened to access aXes – not the
default index.html. This causes an aXes mobile session to be started instead of a normal aXes-TS type 5250
session.

This example causes program TU4LOGON to be started by specifying it on the 5250 logon screen. Your IBM i
system configuration might not allow this. If so, you should set up a testing user profile that has TU4LOGON
specified as its initial program.

Having set up a simple entry point like http://<axes Host>/tut4.html you can now try out your application for
real in a number of ways:

• From a smart phone such an iPhone or an Android 2.1 (or later) phone.

• From a desktop browser – but you must use Safari or Chrome - you cannot use IE.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 326 of 407 407

• In a phone emulator or simulator. These are available for Windows and Mac systems. The complexity of
their set up varies and is beyond the scope this tutorial.

For example, you can test your application:

In the Safari browser on Windows desktop:

In an iPhone emulator on a Mac system:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 327 of 407 407

In an Android emulator:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 328 of 407 407

You should try your application out on one of these test platforms.

Remember that ultimately you must try out your application on a real Smart Phone.

Method 2 - Using a Service or Subroutine Program Approach

In the customer inquiry method 1 tutorial you built a virtual screen to display customer details. This was done
entirely by the client and no specialized server RPG side RPG program was required.

The second example involves creating an RPG service or subroutine style program (it is called a service or
subroutine style program because it provides a service to the smart phone application without having a user
interface of its own).

First you need to write and compile your RPG "service" or "subroutine" program.

The shipped example is TU4CUSTM2P with the source code in the QTUTORIAL file.

The RPG code looks like this:

FAXMBCUST IF E K DISK
 D/copy QTUTORIAL,TU4INCLUDA
 C *ENTRY PLIST
 C PARM StateBlock
 C/free
 CustNumbr = %dec(Info_1:7:0);
 StateBlock = ' ';
 Chain CustNumbr AXMBCUSTR;
 If NOT %Found(AXMBCUST);
 Info_1 = 'No customer with number ' + %char(CustNumbr)
 + ' could be found.';
 NextAction = 'MESSAGE';
 else;
 info_1 = %char(CustNumbr);
 info_2 = CustName;
 info_3 = CustAddr;
 info_4 = CustCity;
 info_5 = CustZip;
 info_6 = CustPhone;
 info_7 = CustEmail;
 NextAction = 'VS_CUSTM2';
 endif;
 *inlr = *on;
 return;
 /end-free

This program receives a data structure parameter named StateBlock (defined by the /COPY member
TU4INCLUDA).

StateBlock contains sub-fields NEXTACTION and INFO_1 through INFO_10.

Logically it does this:

• Extracts a customer number from the INFO_1 field passed in.
• Reads the associated customer record (row) from file (table) AXMBCUST.
• If not found, it sets INFO_1 to an error message and NEXTACTION to 'MESSAGE'.
• Otherwise it maps the customer details into fields INFO_1 through INFO_7 and NEXTACTION to

'VS_CUSTM2'.

If you want to make your own version of this program, copy the source code from member TU4CUSTM2P in
source file and compile it with a different name.

Now log on to aXes as a developer.

Go to your applications HOME page by calling TU2DRIVER and set up the onClick scripting for your Details –
Meth 2 button.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 329 of 407 407

The scripting you need is something like this:

var sCustNo = FIELDS("CUSTOMERNUMBER").getValue();

var iCustNo = parseInt(sCustNo,10);

if ((isNaN(iCustNo))||(iCustNo < 1)||(iCustNo > 9999999))
 alert("Customer number " + sCustNo + " is not a valid customer number.");

else
 USERENV.MOBILE.gotoScreen(ENV,"TU4CUSTM2P",sCustNo);

The logic is:

• The customer number is crudely validated.
• If it is no good, a message box is displayed.
• Otherwise the TU4DRIVER program is instructed to call program TU4CUSTM2P, passing the customer

number value into it in field INFO_1 (if you have your own program use its name instead of
TU4CUSTM2P).

Now try out your Details – Meth 2 button with some bad customer numbers first to check the error handling.

Now try a valid customer number - like 1, 2 or 5.

The resulting screen should look something like this:

By now you should be able to identify this as a new virtual screen named VS_CUSTM2.

You can also see the information returned by RPG program TU4CUSTM2P (or your version).

On the new virtual screen named VS_CUSTM2 you should now complete these steps:

• Complete the preceding New Screen Checklist activities.

• Add and style a title like "Customer Details Meth 2"

• Add a Home push button that does USERENV.MOBILE.gotoScreen(ENV,"HOME");

• Add a Log Off push button that does USERENV.MOBILE.gotoScreen(ENV,"EXIT");

• Add and style a label with text property "Name:"

• Add and style a label beside the name that sets its text by executing the script ENV.returnValue =

USERENV.MOBILE.getINFO(ENV,2);

• Add and style a label with text property "Address:"

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 330 of 407 407

• Add and style a label beside the name that sets its text by executing the script ENV.returnValue =
USERENV.MOBILE.getINFO(ENV,3);

The result should look something like this:

By adding more labels you can display the values of 5250 fields INFO_4 (City), INFO_5 (Zip Code), INFO_6
(Phone Number) and INFO_7 (Email address) by using the getINFO(ENV,N) function to retrieve the values.
This equates directly to these lines in the RPG program TU4CUSTM2P (or your version of it):

 info_1 = %char(CustNumbr);
 info_2 = CustName;
 info_3 = CustAddr;
 info_4 = CustCity;
 info_5 = CustZip;
 info_6 = CustPhone;
 info_7 = CustEmail;

The key point to understand in this method is that the data extraction is performed by an RPG program – but
the final mapping of that information onto the screen is performed by client side scripting. Here the server side
RPG program TU4CUSTM2P (or your version) is acting as a "service" or "subroutine" to the client side logic.

Optional Technical Note:
The INFO_1 through INFO_10 fields are used to map data into and out of RPG programs.

There are only 10 of these fields in the tutorial – but of course you could add more.

Also note that they are 130 bytes long (aXes nearly always uses 132 wide screens) – so by specific positioning
or by using the separator character and the JavaScript "split" function you can easily and generically compact
multiple items into one 5250 screen field.

There are also various other techniques for passing very large amounts of data from RPG programs out to the
client application - including data queues and JSON strings. Contact your product vendor for more details and
examples.

Method 3 - Using a classic 5250 RPG Program
In the customer inquiry method 1 tutorial you built a virtual screen to display customer details. This was done
entirely by the client and no specialized server RPG side RPG program was required.

The method 2 tutorial involved creating an RPG service or subroutine program. It was called to return agreed
values which the client side then arranged on the screen.

The final method (3) involves using an RPG program that uses a real 5250 screen. This is classical way of
presenting information from an RPG program – possibly the way that you are most familiar with.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 331 of 407 407

The display file is named TU4CUSTM3D and its DDS looks like this:

A DSPSIZ(27 132)
A REF(AXMBCUST)
A R RECORD
A THISSCREEN 10A B 1 2DSPATR(PR)
A NEXTACTION 10A B 1 13
A 3 2'Number'
A 4 2'Name'
A 5 2'Address'
A 6 2'City'
A 7 2'Zip Code'
A 8 2'Phone'
A 9 2'Email'
A XUSTNUMBR R B 3 20REFFLD(CUSTNUMBR)
A XUSTNAME R O B 4 20REFFLD(CUSTNAME) CHECK(LC)
A XUSTADDR R O B 5 20REFFLD(CUSTADDR) CHECK(LC)
A XUSTCITY R O B 6 20REFFLD(CUSTCITY) CHECK(LC)
A XUSTZIP R B 7 20REFFLD(CUSTZIP) CHECK(LC)
A XUSTPHONE R B 8 20REFFLD(CUSTPHONE) CHECK(LC)
A XUSTEMAIL R B 9 20REFFLD(CUSTEMAIL) CHECK(LC)
A ERRORMSG 700O O 10 20

This a really simple set of DDS. A couple of things worth noting are:

• The use of fields THISSCREEN and NEXTACTION on line 1. These allow this screen to be easily hooked into

the logic of driver program TU4DRIVER. They will be hidden on the resulting screen of course.

• The 700 byte ERRORMSG field on line 10 position 20. This will be used to send composite error message

details out to the smart phone. There is no need to worry about the length – only as much data as the
field contains is actually transmitted – not all 700 bytes.

• The simplicity of the screen layout. All the labels are arranged down the screen starting at position 2 and

all the data fields similarly at position 20. The reason for this simple layout is that you are going to move
these fields around and even change the way they are visualized in the final result – so any consideration
of 5250 screen positions is really moot. It is probably easier to create DDS like this by editing the DDS
source file instead of using a 5250 screen design facility. Smart phone screens are ultimately not 5250
screens in the normal sense - so don’t waste time "designing" the 5250 screen layouts as 5250 screens.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 332 of 407 407

The associated RPG program is named TU4CUSTM3P and its RPG code looks like this:

FTU4CUSTM3DCF E WORKSTN
FAXMBCUST UF E K DISK
D/copy QTUTORIAL,TU4INCLUDA
D DS
D ThisProgram Like(ThisScreen)
D Request Like(Info_1)
D ErrorCount 7P00
C *ENTRY PLIST
C PARM StateBlock
C/free

 ThisProgram = ThisScreen;

 Dou (NextAction <> ThisProgram);

 Request = Info_1;
 Monitor;
 CustNumbr = %dec(Info_2:7:0);
 On-Error 105;
 CustNumbr = 0;
 EndMon;

 StateBlock = ' ';
 ThisScreen = ThisProgram;
 NextAction = ThisProgram;
 Info_1 = 'UPDATE';
 Info_2 = %char(CustNumbr);
 ErrorCount = 0;
 ErrorMsg = 'NONE';

 if (Request = 'UPDATE');
 Exsr Update_Customer;
 else;
 Exsr Display_Customer;
 endif;

 If (NextAction = ThisProgram);
 Exfmt Record;
 Endif;

 EndDo;

 *inlr = *on;
 return;
 // ---
 Begsr Display_Customer;
 Chain CustNumbr AXMBCUSTR;
 If NOT %Found(AXMBCUST);
 StateBlock = ' ';
 Info_1 = 'No customer with number ' + %char(CustNumbr)
 + ' could be found (from TU4CUSTM3P)';
 NextAction = 'MESSAGE';
 else;
 Unlock AXMBCUST;
 Exsr Map_Out;
 Endif;
 Endsr;
 // ---
 Begsr Update_Customer;
 Exsr Validate_Customer;
 If (ErrorCount = 0);
 StateBlock = ' ';
 Chain CustNumbr AXMBCUSTR;
 If NOT %Found(AXMBCUST);
 Info_1 = 'No customer with number ' + %char(CustNumbr)
 + ' could be found (from TU4CUSTM3P)';
 else;
 Exsr Map_In;
 Update AXMBCUSTR;
 Info_1 = 'Details of customer ' + %trim(CustName)
 + ' have been sucessfully updated.';
 Endif;
 NextAction = 'MESSAGE';
 Endif;
 Endsr;
 // ---
 Begsr Validate_Customer;
 ErrorMsg = ' ';
 If (XustName = ' ');
 ErrorCount += 1;
 ErrorMsg = %trim(ErrorMsg)
 + ' A customer name is required.';
 endif;
 If (XustAddr = ' ');

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 333 of 407 407

 ErrorCount += 1;
 ErrorMsg = %trim(ErrorMsg)
 + ' An address is required for all customers.';
 endif;
 If (XustPhone = ' ');
 ErrorCount += 1;
 ErrorMsg = %trim(ErrorMsg)
 + ' A phone number is required for all customers.';
 endif;
 If (ErrorCount = 0);
 ErrorMsg = 'NONE';
 Endif;
 Endsr;
 // ---
 Begsr Map_Out;
 XustNumbr = CustNumbr;
 XustName = CustName;
 XustAddr = CustAddr;
 XustCity = CustCity;
 XustZip = CustZip;
 XustPhone = CustPhone;
 XustEMail = CustEMail;
 Endsr;
 // ---
 Begsr Map_In;
 CustName = XustName;
 CustAddr = XustAddr;
 CustCity = XustCity;
 CustZip = XustZip;
 CustPhone = XustPhone;
 CustEMail = XustEMail;
 Endsr;
 /end-free

TU4CUSTM3P a fairly simple RPG program. A couple of things worth noting are:

• It's designed to be called by TU4DRIVER because it has the common StateBlock parameter (a data

structure defined in RPG source member TU4INCLUDA).

• It loops until the client instructs it to do something else - in which case it ends and yields control back to

TU4DRIVER.

• It can display customer details.

• It can update customer details.

• It has validation rules that can cause an update to be rejected.

First you need to write and compile your 5250 display file and the RPG program.

The shipped example display file is TU4CUSTM3D (source in QTUTORIAL) and the RPG program is called
TU4CUSTM3P (source in QTUTORIAL).

You can either use the shipped objects (which are already compiled) or copy the source code and create your
own versions with different names.

Next, log on to aXes as a developer, go to your application’s home page by calling TU4DRIVER and set up the
onClick scripting for your Details – Meth 3 button

The scripting you need is something like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 334 of 407 407

/* Get the customer number from the screen */

var sCustNo = FIELDS("CUSTOMERNUMBER").getValue();

/* Invoke program TU4CUSTM3P sending request and customer number */

USERENV.MOBILE.gotoScreen(ENV,"TU4CUSTM3P","DISPLAY",sCustNo);

Now try out your Details – Meth 3 button.

This time the screen displayed is not a virtual screen – it is a real 5250 screen presented by program
TU4CUSTM3P according to the DDS defined in display file TU4CUSTM3D.

By now you should know the drill – HOWEVER – in this case most of the fields on the screen should not be
hidden.

Fields THISSCREEN (line 1 pos 2), NEXTACTION (line 1 pos 13) and ERRORMSG (line 10 pos 20) should be
hidden - all of the other fields should be left visible.

Additionally, the long error message field name on line 10 at position 20 should be named ERRORMSG in the
aXes screen definition, like this:

Save your screen definition changes after you apply a name to the ERRORMSG field.

Now you should:

• Complete the New Screen Checklist
• Add a screen title "Customer Details – Method 3".
• Add the standard "Log Off" and "Home" push buttons
• Move and size the other label and input fields. Style the labels.
• Add a "Save Changes" push button. Execute this script when it is clicked:

USERENV.MOBILE.gotoScreen(ENV,"TU4CUSTM3P");

The resulting screen looks something like this (note that it has slightly different style to the screens used in the
preceding tutorial steps):

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 335 of 407 407

Save all your screen customization changes.

Now add a label eXtension to your screen and apply base style errorMessage to it, position it in a free area on
your screen – something like this:

Change it so that its text property is derived by executing this script:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 336 of 407 407

ENV.returnValue = "";
sError = FIELDS("ERRORMSG").getValue();
if (sError != "NONE") ENV.returnValue = "Error =>" + sError;

This script gets the value of the field you named ERRORMSG (which is hidden from view) and puts its value
into the eXtension – providing that it does not contain the message "NONE".

The end result is that when you try to update a customer with a blank name, address or phone number the
messages are made visible to the user …

Save your customization changes and test your new screen. Try saving after blanking out the customer name.

There are many ways to present error messages and this technique is very simple.

Its main benefit is that it shows all the error messages to the user without needing another screen interaction.
When designing a real application you should develop a standard way to show error messages and use it
consistently on all screens.

Notice that when you update a customer screen your MESSAGE screen is displayed to confirm the action to the
user:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 337 of 407 407

Doing this type of positive confirmation of user's actions is useful on smart phones where variable response
times are common.

The "Messages" button on your Home screen is now redundant.

In this application there is no reason for the user to display the messages (and in fact it may show incorrect
details at times). Confirmation messages are presented automatically by the application when it is appropriate.

Remove the "Messages" button from your home page now and save your changes.

Review of the 3 Interface and Access Methods

In the last 3 tutorial steps the 3 main ways of assembling and processing information on smart phone screens
has been covered. These are:

Method Description Virtual
Screen
Used

Characteristics

1 Client Side Yes The client scripting dynamically creates the screen
content entirely by executing script and SQL commands,
etc. No special server side RPG logic is required to do
this.

2 Client and "Service" or
"subroutine" program

Yes The client scripting executes an RPG (or even CL) server
side program as a service or subroutine to gather or
process information required for the client side screen.

3 Server 5250 program No A classic RPG 5250 server program is used. It processes
information through classic 5250 DDS. The client side is
limited to just arranging how the information is
presented.

If you understand all three of these methods you should be able to decide which one to apply to which problem
when designing and implementing a smart phone application.

The following tutorial steps are optional – they cover a broad range of topics that you may not need to know
about right now.

Optional Steps

Client Side Validation
In the preceding Customer Details – Method 3 example data validation is performed by server RPG program
TU4CUSTM3P. You can also easily do client side validation. Display your Customer Details – Method 3 screen
and name the input fields as indicated.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 338 of 407 407

Since these are real 5250 screen fields and not newly added eXtensions you name them here:

Save your changes.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 339 of 407 407

Now locate the screen level onLeave property and change it to execute this script:

var CUSTNAME = FIELDS("CUSTNAME").getValue();
var CUSTADDR = FIELDS("CUSTADDR").getValue();
var errormessage = "";

if (CUSTNAME == "") errormessage += " You must specify a customer name.";
if (CUSTADDR == "") errormessage += " You must specify a customer address.";

if (errormessage != "")
{
 alert(errormessage);
 ENV.returnValue = false; /* Stop send of data to server */
}
else
{
 USERENV.MOBILE.onLeave(ENV);
}

Save your changes.

You should now not be able to save customer changes unless you have specified a name and address – and
when the data is invalid it is stopped before it is sent to the server.

Validating at the client and then (re)validating at the server is a strongly recommended practice.

Remembering Values and Initial Values

In the preceding tutorial steps you may have noticed that the customer number is lost every time you
(re)display the home page. This could be annoying and it is easily solved.

Edit the USERENV object and add a new property to your USERENV.MOBILE object definition:

 currentCUSTOMER : null,

 HOME_CustomerNumber : "1", /* Remembered Customer Number */

 deviceWidth : function(env) { env.returnValue = 320; },

Save your USERENV changes and follow any restart instructions.

On your home page the field where they enter the customer number is named CUSTOMERNUMBER:

Change the field CUSTOMERNUMBER to derive its value by executing this script:

 ENV.returnValue = USERENV.MOBILE.HOME_CustomerNumber;

 if (USERENV.MOBILE.HOME_CustomerNumber != null)
 {
 FIELD.setValue(USERENV.MOBILE.HOME_CustomerNumber);
 }

Change the onLeave event of your home page to be like this:

USERENV.MOBILE.onLeave(ENV);
USERENV.MOBILE.HOME_CustomerNumber = FIELDS("CUSTOMERNUMBER").getValue();

You should now see that as you start the application the default value of "1" is displayed initially and that when
you go back to the home page the last value entered is remembered.

On phones data entry can be difficult – so the more places you can remember last used values and set initial
defaults that do not need to be changed, the better for the phone user.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 340 of 407 407

Ease of Use – Current and Dense Information Presentation
Smart phone applications are generally harder to work with than devices with full keyboards.

You can make the user's ability to select things easier by maintaining the concept of the "currently selected
thing" (e.g.: the current Order, Product, Customer, Spare Part, etc).

To demonstrate this approach, add this to your project's static tables file:

DefineObjectInstance {
 className = "StaticTable",
 name = "AXMBPART",
 source = "sql",
 selectSQLcommand = "PARTNUMBR,PARTDESC,PARTAVAIL,PARTWHOLE,PARTRETL,PARTGIFFL from
AXESDEMO.AXMBPART ORDER BY PARTDESC ",
 resultColumnNames = {
"PARTNUMBR","PARTDESC","PARTAVAIL","PARTWHOLE","PARTRETL","PARTGIFFL" }
 };

This will create an aXes static table named AXMBPART from the spare parts data base table AXMBPART in the
AXESDEMO library.

Then add the highlighted lines to your USERENV.MOBILE object definition:

 lockZoom : function(env) { env.returnValue = true; },

 curAXMBPART : null, /* Reference to current AXMBPART row */

 signOn : function(env)
 {
 USERENV.MOBILE._isiPhone = (navigator.userAgent.match(/iPhone|iPod/) !=
null);
 env.SHOWAXESMENUBAR(false);
 env.SHOWAXESSTATUSBAR(false);

 /* Load all static tables */
 env.TABLEMANAGER.loadStaticTables(USERENV.staticTablesFile,null,false);

 /* Set a reference to the first row in the AXMBPART table */
 if (this.curAXMBPART == null)
 {
 var t = env.TABLEMANAGER.getTable("AXMBPART");
 this.curAXMBPART = t.child(0);
 }

 },

These force the loading of all static tables. It then keeps a reference to the "current" spare part in the property
USERENV.MOBILE.curAXMBPART. This means that anywhere in your scripting you can now reference
USERENV.MOBILE.curAXMBPART.PARTNUMBR (the current spare part's number) or
USERENV.MOBILE.curAXMBPART.PARTWHOLE (the current spare part's wholesale price).

Note: The USERENV.MOBILE.signOn() function runs because you have previously set this up in your project:

Log off and restart so that all your changes are loaded.

Now that we have a table of spare parts available and a reference to the "current" spare part it is easy to show
the user what it is and also allow them to change it.

Add a group box, a drop down and a label field to your home page, something like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 341 of 407 407

Name the label field SPARE_DETAILS

Then change its text property to be evaluated by executing this script:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 342 of 407 407

var Text = "No spare part details are available";
var P = USERENV.MOBILE.curAXMBPART;

if (P != null)
{
 Text = "NO:" + P.PARTNUMBR;
 Text += ", DESC:" + P.PARTDESC;
 Text += ", STOCK:" + P.PARTAVAIL;
 Text += ", PRICE:$" + P.PARTWHOLE + "(W)$" + P.PARTRETL + "(R)";
}

ENV.returnValue = Text;

Save your changes.

The label field should now start to show details about the current spare part (USERENV.MOBILE.curAXMBPART)
in a very "dense" manner – something like this:

Now change the drop down to have these properties:

Property Value What does it mean?
dataSourceType Static Table Fill from a static table
tableName AXMBPART The name of the static table
onFillDropDown ROW.PARTDESC Use the spare part description

as the visible value in the drop
down

onSelectValue
ROW == USERENV.MOBILE.curAXMBPART

Select the drop down row if it is
the same as the current spare
part

onSelectValueChange
USERENV.MOBILE.curAXMBPART = ROW;

FIELDS("SPARE_DETAILS").refresh();

When the user selects a spare
part in the dropdown, change
the current spare part reference
to the row selected - then ask
the "SPARE_DETAILS" label to
refresh its own content based
on this change.

Save your changes.

What you should now find is that you can select different spare parts in the drop down and the label area
changes to show more details.

In effect you have created a very dense spare parts stock and price inquiry screen – using a very simple
structure and very small amount of screen real estate (you could of course use multiple labels instead of one
large label to present the information in a classical column format).

The concept of the "current" selection passes on to other screens.

Display your Customer Details – Meth 1 screen and add a label eXtension like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 343 of 407 407

Change the text property of the new label to be dynamically evaluated by this script:

var Text = "No spare part details are available";
var P = USERENV.MOBILE.curAXMBPART;
if (P != null) Text = P.PARTNUMBR + "-" + P.PARTDESC;
ENV.returnValue = Text;

You should find that the Customer Details – Meth 1 screen displays the details of whatever spare part was
selected on the home screen, like this:

You can also use the current selection and dense display approaches to manage searches on much larger data
sets.

Add this new dynamic SQL table definition to your project:

 DefineObjectInstance {
 className = "DynamicTable",
 name = "AXMBPART-DYNAMIC",
 source = "sql",
 selectSQLcommand = "PARTNUMBR,PARTDESC,PARTAVAIL,PARTWHOLE,PARTRETL,PARTGIFFL from
AXESDEMO.AXMBPART where upper(PARTDESC) like '%:SQLVariable_DESC%' ORDER BY PARTDESC ",
 resultColumnNames = {
"PARTNUMBR","PARTDESC","PARTAVAIL","PARTWHOLE","PARTRETL","PARTGIFFL" }
 };

When executed, this SQL request will produce an aXes table named AXMBPART-DYNAMIC that contains all the
spare parts that have a description containing a specified value.

Now alter your home screen like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 344 of 407 407

Double check that you have:
• Named the input field SEARCH_STRING
• Named the small blank label to the right SEARCH_COUNT
• Named the drop down SPAREPART_DD

Select the "Go" push button to execute this script when clicked:

var SearchValue = FIELDS("SEARCH_STRING").getValue().toUpperCase();
if (SearchValue == "")
{
 alert("You need to enter a search value");
}
else
{
 TABLEMANAGER.loadDynamicTable("AXMBPART-
DYNAMIC",USERENV.dynamicTablesFile,{SQLVariable_DESC:SearchValue});
 var table = TABLEMANAGER.getTable("AXMBPART-DYNAMIC");
 FIELDS("SEARCH_COUNT").setProperty("text",("Found " + table.childCount().toString()));
 USERENV.MOBILE.curAXMBPART = table.child(0);
 FIELDS("SPAREPART_DD").refresh();
 FIELDS("SPARE_DETAILS").refresh();
 FIELDS("SEARCH_COUNT").refresh();
}

This script:
• validates what has been input to the SEARCH_STRING field.
• Executes the "AXMB_PART-DYNAMIC" SQL command defined earlier – substituting the SQLVariable_DESC

with the user's SEARCH_STRING value.
• Updates the SEARCH_COUNT label's text property with a count of how many rows were found by the SQL

command.
• Updates the "current" spare part reference (USERENV.MOBILE.curAXMBPART) to point to the first row of

aXes table that the SQL command produced.
• Asks the drop down, spare parts details and search count label all to refresh their displays with the

updated information.

Finally change the static table (yes, static table) source for the drop down SPAREPARTS_DD to be from
AXMBPART-DYNAMIC - like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 345 of 407 407

Save all your changes.

You should find that you can now search by clicking the "Go" button for words like "valve" or "agit" to find
various spare part valves and agitators ….

In this simple example you have now managed to produce a generically searchable spare parts
stock/cost enquiry – all managed and presented in a very small and dense screen area.

Phone, Mail, SMS and Maps Integration
You can integrate with various capabilities of the smart phone.

Add these example functions to your USERENV.MOBILE object definition in your projects USERENV.JS file, save
the changes and then close/restart as directed:

 escape : function(s) { return(encodeURIComponent(s)); },

 Phone : function(env,number)
 {
 var URL = "tel:";
 URL += USERENV.MOBILE.escape(number.toString());
 window.open(URL,"_blank");
 },

 SMS : function(env,number)
 {
 var URL = "sms:";
 URL += USERENV.MOBILE.escape(number.toString());
 window.open(URL,"_blank");
 },

 Mail : function(env,address,subject,body)
 {
 var URL = "mailto:";
 URL += address;
 URL += "?subject=" + USERENV.MOBILE.escape(subject);
 if ((body != null) && (body != "")) URL += "&body=" +
USERENV.MOBILE.escape(body);
 window.open(URL,"_blank");
 },

 Map : function(env,address)
 {
 var URL = "http://maps.google.com/maps?q=";
 URL += USERENV.MOBILE.escape(address);
 window.open(URL,"_blank");
 }, /* Watch out for whether you need or don’t need this last comma */

Now on your Customer Details – Meth 1 screen add 4 buttons towards the bottom of the screen like this:

Then set up the onClick scripting for each button like this:

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 346 of 407 407

Button onClick Script

Phone

USERENV.MOBILE.Phone(ENV,USERENV.MOBILE.currentCUSTOMER.CUSTPHONE);

Email

var MOB = USERENV.MOBILE;

MOB.Mail(ENV,MOB.currentCUSTOMER.CUSTEMAIL,"This is a subject", "This is a
message.");

SMS

USERENV.MOBILE.SMS(ENV,USERENV.MOBILE.currentCUSTOMER.CUSTPHONE);

Map

var MOB = USERENV.MOBILE;
var C = MOB.currentCUSTOMER;
var Addr = C.CUSTADDR + " " + C.CUSTCITY + " " + C.CUSTZIP;

MOB.Map(ENV,Addr);

The e-mail and map options should work on your PC browser.

To test the phone and SMS options you will have to use a real phone or phone emulator.

Note: some Android versions appear to have technical issues with SMS: requests.

Forget about using ……..
• 5250 pop-up windows in new smart phone applications (never ever do this).
• Function key driven applications (there are no function keys on mobile devices).
• Deep program call stacks. Keep the application flat and simple with simple navigation requests coming

from buttons or hyperlinks to move between screens. The more screens that allow you to move directly
between them, the easier the application will be to use.

Mostly Forget about using ……..
• Generally you should not use 5250 subfiles in smart phone applications. There may be valid use – but

you should consider alternatives first, especially when selecting business instruments like orders,
products, customer, etc.

Using a "Flat" Screen Navigation Model
In 5250 applications the use of complex program call stacks is common. You log on to Menu A, then option 6
calls up Menu B, where option 2 calls up Menu C, where option 4 calls up the Order Inquiry program. You now
have 4 programs all active and in a complex program stack. This is called "stateful programming". In many
respects this type of stateful call stack implementation is unique to the IBM i community.

In smart phone designs you should try to minimize the use of stateful programming techniques. Such a change
is actually very easy to make and will usually produce a simpler and far more flexible and extensible
application. Additionally, any programs you produce may be very easily converted into servicing other things
(e.g. web services) sometime in the future.

Using a Home Screen
You should use a single Home screen. Its role is:

• The screen the user sees initially when they log on.
• It is the place in which most interactions are initiated from.
• All other screens should have a button that goes directly back to the home screen. This is something

akin to using F12 on a 5250 screen or the Cancel button on a Windows form.
The home screen always has a log off button.

Log off from every screen
You should have a log off button on every screen.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 347 of 407 407

Using a Messages Screen
You should use a single Messages screen. Its role is to show status, completion or error message details to the
user. Normally it has only two buttons enabled. One to go back to the Home screen (allowing another activity
to be initiated) and the other to log off.

Portrait or Landscape – Choose One
Generally you should specifically design for Portrait or Landscape mode. In this tutorial all designing is done in
Portrait mode. Supporting both modes in your application adds a significant level of complexity. You should
assess the effort/reward equation before committing to support both modes.

Prototyping Your Application
If you have completed the preceding tutorial steps you should have figured out by now that it is quite easy to
prototype a smart phone application by chaining together different virtual screens.

By adding navigation buttons the basic layout and flow of many different screens can be prototyped, chained
together and even demonstrated to stakeholders – even to the point of inserting temporary images onto the
screens to demonstrate what the final content (or body) of the application will look like.

Making a Real Application
When designing and implementing a real application you should never use objects from the AXESDEMO
library. Any objects that you intend to use in your application should be copied from source file
AXESDEMO/QTUTORIAL and then recompiled with a different object name in a different library. When you
change the name of objects you may have to make equivalent changes to copied source code references.

Using the Supplied MS-PowerPoint Set to Draft an Initial Design

It is very important that you draft your smart phone application design before you write a single line of code to
implement it or physically begin to design any screens with software.

This process is called design drafting.

Usually a draft design is reviewed several times with the project stakeholders before you begin to implement it
in any form of software.

A straightforward and effective way to draft out your proposed application design is by using something like
the associated MS-PowerPoint (PPT) set. Alternatively you can possibly buy draft design pads like this from
your local computer bookstore.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 13 - Smart Phone Applications ,
Page 348 of 407 407

Copy the shipped Extension_Tutorial 12 - Smart Phone Applications.ppt file from the /docs folder on
your aXes server to your PC and then open it. The shipped PPT has the following structure:

• An aXes tutorial identification page - which you can immediately remove.
• A title page listing the project name, objective, dates of update and versions.
• A screen summary page that summarizes all the screens in your design
• Multiple detailed screen layouts – one for each screen in your design
• A control and image page that contains images you use to produce your design. The shipped version

contains some basic details – but you would certainly add to these as your design progresses.

You sketch out your proposed screen designs and make notes about the usage of the screen using one PPT
page per screen. Once the design sketch has been reviewed and approved by the project stakeholders, you can
begin to implement, possibly by producing a working prototype. The PPTs may act as a simple guiding
specification summary – which you might choose to extend either in the PPT set by adding additional pages or
by some other means such as MS-Word documents.

eXtensions Tutorial 14 - Utilities

Prerequisites for Completing this Tutorial

To follow this tutorial you must have:
3. An existing projects

Overview and Objectives
The following material provides backup and restore functionality for an existing project.

The objective of this tutorial is to guide you to create a backup of an existing project, download the backup file
for safe keeping, and restore the backup and view a list of files in a project.

Documentation Library

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 14 - Utilities, Page 350 of 407 407

Backup and Restore

Getting Started
You need to have an existing project

1.) Open an existing project

2.) Click on the Utilities section -> Save/Restore Files

Backup

Create a backup
To get started on this tutorial, log on to aXes as a developer and open an existing project you want to backup.
Click the Save button, and a backup file will be created. A dialog showing the message “Backup complete, No
errors detected” will be displayed on completion.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 14 - Utilities, Page 351 of 407 407

Downloading backup file
Once a backup file is created, a ‘download’ link will be displayed adjacent to the Project filename.
Click on the download link and it will start downloading the backup file. See screenshot below.

Restore

To restore a backup
To Restore from backup, log on to aXes as a developer and open an existing project you wanted to restore a
backup, make sure a backup file is already created. Click the Url link “restore” to start the restore process. A
dialog showing a message “restore success syymmdd 000” pops up upon completion.

Note: (yymmdd000 indicate yy-year, mm-month, dd-day and 3 zero indicate count).

Warning and Disclaimer:
When restoring a backup file, please ensure you restore from the correct backup file of the specific Project. A
rollback or recovery procedure does not exist.

Delete

To delete a backup
To delete a backup, log on to aXes as a developer and open an existing project for the
backup you wish to delete. Clicking on the Url link “delete” will delete a backup file. A

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 14 - Utilities, Page 352 of 407 407

dialog showing the message “deleted backup files
/axes/backup/<project>/syymmdd000.file” will be displayed.

Click on the Reload link to refresh the screen.

Content © LANSA Group
All Rights Reserved

eXtensions Tutorial 14 - Utilities, Page 353 of 407 407

List Project files

Getting Started
You need to have an existing project

1.) Open an existing project

2.) Click on the Utilities section -> List Project Files, A Project List will be displayed.

Right side shows all project files.

Tutorial 15 – TS2 Developer Tools - Page 354 of 407

eXtensions Tutorial 15 - TS2 Developer Tools

Basic Screen Enhancement

You must complete Tutorial 1 and 2 first
TS1 Developer tool is assumed knowledge for this tutorial.
If you have not completed related to TS1 developer tools please do so before attempting this tutorial.

Using the aXes Designer Window
Using your desktop short cut open the aXes Projects Home Page.

Sign on as an aXes developer and select your project from the list on the right.

Then use the Work as TS2 Developer option to start an aXes development session.

Sign on to a 5250 session.

Display the System I Main Menu.

Documentation Library

Tutorial 15 – TS2 Developer Tools - Page 355 of 407

Check that the aXes Screens tab shows the screen name MAIN, which you assigned in tutorial 1(ts1
development):

Tutorial 15 – TS2 Developer Tools - Page 356 of 407

Now click on the eXtensions Tab and select application. It should look like this:

Tutorial 15 – TS2 Developer Tools - Page 357 of 407

Screen Mode

TS2 developer tools have 2 screen mode that can be switched between designer screen mode and normal
screen mode. When customizing a screen it is recommended to switch to designer screen mode.

Designer Screen mode (lock screen)

A grid will show.

Adjusting Grid click this button and a dialog box grid setting will pop up.

Tutorial 15 – TS2 Developer Tools - Page 358 of 407

Screen Customization
To start customizing the screen you can choose on customizing automatically generated field or add a user
field.

Customize automatically generated field.

1. Select any one of Unnamed field
2. Click the Customize Field menu items, properties of default visualization becomes enabled (view styles

become Edit Styles.. button)
3. Click Edit style… button on the style properties of default visualization.
4. Then Edit Style dialog appear where on you can add or defines your custom styles.

Tutorial 15 – TS2 Developer Tools - Page 359 of 407

5. Click Ok, styles will be applied instantly.
6. Click Save Button on the upper left corner of Extension Tab to save your customization.

Tutorial 15 – TS2 Developer Tools - Page 360 of 407

Customize a User field.

1. Click Add User Field menu item
2. Drag the User Field across the desired position of the screen
3. Click Add Extension menu items

4. An add eXtension Dialog box will show up.

Tutorial 15 – TS2 Developer Tools - Page 361 of 407

5. Select Push Button and click Add.
6. A push button extension will be added to user field.
7. Then you can fill up its properties, like caption, styles and events.
8. Click Save Button on the upper left corner of Extension Tab to save your customization.

Tutorial 15 – TS2 Developer Tools - Page 362 of 407

Deleting User Field

Added User field can be deleted but automatically generated field is not allowed.

Select a user field and the delete user field option is enabled.

Select a automatically generated field and the delete user field options is disabled.

Tutorial 15 – TS2 Developer Tools - Page 363 of 407

Field Customization
Substitute extension of automatically generated Field or replacing default visualization with other extensions.

1. Select the field and Click Customize field

2. Click then Add eXtension

3. Select push button from the eXtension dialog box and Click Add

4. A Button extension will be added to the field

5. Then click Delete menu items to delete the existing default visualization

Tutorial 15 – TS2 Developer Tools - Page 364 of 407

6. The results is only the button extension remain on the field

Revert to default visualization

1. Click Revert to Default menu items then it will change back to default visualization

2. This is the results.

Tutorial 15 – TS2 Developer Tools - Page 365 of 407

Alignment Tools

1. Selecting multiple extension (field) items will enable the alignment button.

2. Then you can choose from the alignment menu items which function do want to perform.

3. Click Align left Edges, will align all the selected extension (field) items to the left.

eXtensions Tutorial 16 – JQuery Themes - Page 366 of 407

eXtensions Tutorial 16 - jQuery Themes

The Shipped Basic jQuery Themes
aXes ships with a set of jQuery themes. These are accessible from the application’s Styling->jqueryTheme
dropdown property in design mode.

The themes above were downloaded from the jQuery Theme Roller web site
(www.jqueryui.com/themeroller). You can download additional themes or customize each theme using the
Theme Roller web site. These same styles will be displayed on the theme property of the jQueryTheme
extension.
Initially some of this material may seem complex to you. However the time you invest in understanding it will
greatly improve the final appearance of your application.

aXes Styles Hierarchy

Property Style

Property
Style

Application
Style

jQueryTheme
Extension Style

Application JQuery
Theme Style

Documentation Library

Lowest Priority

Highest Priority

http://www.jqueryui.com/themeroller

eXtensions Tutorial 16 – JQuery Themes - Page 367 of 407

 These are the styles set using the extension’s style properties. When set, this will be applied over any
other styles.
Application Style
 These are the styles created using the Application’s Styling->styles property. When no specific
property style is set, this will be applied over jQueryTheme Extension and Application jQuery Theme styles.
jQueryTheme Extension Style
 This is the jQuery theme setting on a particular screen using the jQueryTheme extension. When the
specific property styles and application style collection is not set, the jQueryTheme extension style will be
applied over the Application jQuery Theme Style.
Application jQuery Theme Style
 This is theme that is set using the Application->Styling->jqueryTheme dropdown property. In order
for this to work, the Application->Styling->usejQueryExtensions checkbox should be checked. If no other
styles are set, this will be set as the default styles for all jQuery themeable extensions. The jQuery themeable
extensions are the following:

• Checkbox
 Date

 Default Visualization

 Dropdown

 Group Box

 HyperLink

 Inputbox Style 1

 Label

 Message Handler

 Mobile Camera

 Mobile Email

 Mobile SMS

 Multitype Input Box

 Push Button

 Quick Pick Menu

 Radio Button

 Screen Data Viewer

 Simple Box

 Simple Line

 Simple Stripe

 Spin Edit

 Subfile Scroller

 jQuery Keypad

This means that any existing custom styles that currently exist in a project will not be affected by choosing to
use the jQuery theme. But to be able to fully experience the benefits of jQuery theme, we highly recommend
removing any existing styles and work on customizing the jQuery themes.

Turning jQuery Theme On
jQuery theme will be applied to existing or newly created projects by checking the Appication’s Styling-
>usejQueryExtensions checkbox.

When a button, radio button, checkbox and dropdown exist in a screen, the default display will be as follows:

eXtensions Tutorial 16 – JQuery Themes - Page 368 of 407

When usejQueryExtensions is checked, any extension currently added (buttons, dropdowns, etc.) which have
no customized style will be set to the default jQuery theme, which is Redmond.

The appearance or style of the extensions will vary according to the currently chosen jQuery theme.
For more information of each extension’s change in appearance when using jQuery theme, please refer to the
extension’s help documentation.

Changing jQuery Theme
To change the default theme to another theme, just choose any shipped themes from the Application’s
jqueryTheme dropdown list. For example, choosing ui-lightness from the Application’s Styling->jqueryTheme
dropdown list will change the display of the extensions shown above to the following:

After changing the theme using the jqueryTheme dropdown list, just save the project and unlock the screen.
The display will automatically be changed to the selected jQuery theme.

Dynamically Changing jQuery Theme
You can also dynamically change the jQuery theme by calling the SETAXESJQUERYTHEME() api. Calling
GETAXESJQUERYTHEME() on the other hand will give you the current jQuery theme for the project.
In this example a quick pick menu extension has been added to the System i Main Menu like this:

Notice how the display of the quick pick menu is in accordance with the currently selected jQuery theme.
The quick pick menu's onItemSelection property has this script:
var sTheme = "";
switch (ENV.itemNumber)
{

eXtensions Tutorial 16 – JQuery Themes - Page 369 of 407

 case 1: sTheme = "blitzer"; break;
 case 2: sTheme = "cupertino"; break;
 case 3: sTheme = "humanity"; break;
 case 5: sTheme = "smoothness"; break;
 case 6: sTheme = "ui-darkness"; break;
 case 7: sTheme = "ui-lightness"; break;
 default: sTheme = "redmond"; break;
}
SETAXESJQUERYTHEME(sTheme);
Using the above script, when “humanity” is selected from the quick pick menu, the screen extensions’ display
will be changed to the following:

SETAXESJQUERYTHEME can be called on any property that allows scripting as an input.

Note: Calling SETAXESJQUERYTHEME will change the default jQuery theme for the application. This
means that any screens that do not define its own jQuery theme using the jQuery Theme extension
will be displayed using the jQuery theme that was set using SETAXESJQUERYTHEME.

Creating and Customizing jQuery Themes
jQuery themes can be created or customized (change styles, rename, etc.) to suit your taste using the jQuery
ThemeRoller web site at http://jqueryui.com/themeroller/. After customization, you can download and use
the theme in your existing projects or on newly created ones. Below is the steps on how you can customize the
jQuery theme to make the jQuery extensions appear as you want it to.
The ThemeRoller Interface

• Roll Your Own Tab

http://jqueryui.com/themeroller/

eXtensions Tutorial 16 – JQuery Themes - Page 370 of 407

This tab is where you can create or customize the styles of your jQuery theme.

• Gallery Tab

The Gallery tab is where existing jQuery themes can be selected, downloaded and
previewed. You can choose a theme by clicking at it and the preview will automatically be
seen on the Preview portion of the page.

• Preview

eXtensions Tutorial 16 – JQuery Themes - Page 371 of 407

On the right hand side of the page is where you can see the preview of the jQuery theme.
When changing the values of certain styles using the Roll Your Tab, the preview part will
automatically be updated to show your changes. In the Gallery Tab, when clicking on an
existing theme, it will automatically be shown on the preview pane.

• Download Button
Download buttons exist both in the Roll Your Own tab and the Gallery Tab. Click the
download button on the Gallery tab will take you to the download page where you can
download the existing jQuery theme that you selected. Clicking the download button on the
Roll Your Own tab will take you to the same download page but it will download the current
settings or customization you have on the Roll Your Own tab.

Creating your own theme
To start creating your own theme, just go to the ThemeRoller page and change the settings on the Roll Your
Own tab. The following are the styles that can be changed:

• Font Settings

Changing the font settings will affect the default font settings that is being used on all jQuery
extensions. If no font settings is set for the application, this font setting will be used to
display the text on the terminal screen.
Try to change the Font Size to 2.1em and see how most of the texts on the preview screen
becomes large.

• Corner Radius

eXtensions Tutorial 16 – JQuery Themes - Page 372 of 407

The corner radius is used for the rounding of the corners of the jQuery extensions. The lower
the value, the smaller the rounding appears. As written in the “Note”, this setting is not
supported on IE7 or IE8. Try changing the value to 1px and see on the preview how the
round shape of the corners of the buttons, tabs, windows, etc. decrease.

• Header/Toolbar

The Header/Toolbar setting is used in the jQuery Groupbox and Date extension. Changing
these styles will impact the font, border, background and icons of the headers of the Group
Box and the Date extension.

• Content

Changing the Content styles will change the background, border and text colour of the input
boxes in the terminal screen. This includes the Inputbox, Multitype Input Box, jQuery
Keypad, etc.

• Clickable: default state

These styles when changed will affect the text colour, background, icon and border of
extensions that can be clicked such as Push Buttons, Mobile SMS, Date, etc. The default
state indicates that this is the style of these clickable extensions when being displayed
without any user interaction

• Clickable: hover state

eXtensions Tutorial 16 – JQuery Themes - Page 373 of 407

These styles are applied to clickable extensions when the mouse is hovered over it. The style
will revert back to the Clickable: default state once the mouse leaves the extension.

• Clickable: active state

The active state style will be applied when the clickable extensions are click or pushed. If the
extension is a button, after pushing, the style will revert back to the default state. For other
extensions that retains the push state, such as checkbox, radio buttons, etc., this style will
remain unless the extension is clicked again. Clicking again will toggle the state back to the
default state therefore applying the default state style.

• Highlight

This style is not currently being implemented in existing jQuery extensions. But it will be
applied in future extensions where any message or information is displayed on the screen.
This may include hints, placeholder, etc.

• Error

This style is also not yet being used in any extensions but can be used in future extensions
where error messages needs to be displayed.

• Modal Screen for Overlays

eXtensions Tutorial 16 – JQuery Themes - Page 374 of 407

This style is not yet being used but will be implemented on the background screen of a
popup window.

• Drop Shadows

This style is not yet being used but will be implemented as a style for the popup window.

For more details on the specific description of each styles property and classes that uses these styles, please
visit the jQuery CSS Framework site referenced on the bottom of this tutorial.
Customizing a jQuery Theme
In order to customize existing jQuery Themes, you first need to select an existing theme from the Gallery tab
of ThemeRoller and then clicking on the Edit button underneath the theme.

Clicking on the Edit button will bring you back to the Roll Your Own tab with the selected theme’s style set and
the preview displayed.
From there you can customize the styles and download the theme.
Deleting jQuery Themes
To delete a jQuery Theme, just delete its folder from the \ts\ts2\css\projectThemes folder. Deleting the folder
of the theme will delete it from the jqueryTheme dropdown list.
jQuery Theme Styles and Extension Table
The table below lists the jQuery Theme Styles and the extensions that will be affected when they are changed.

• Auto Complete
N.A.

• Checkbox
Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes Yes No No Yes Yes Yes No No No No

eXtensions Tutorial 16 – JQuery Themes - Page 375 of 407

• Date
Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No Yes Yes Yes Yes Yes No No No No
• Default Visualization

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No No Yes No No No No No No No

• Dropdown

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes Yes No Yes Yes Yes No No No No No
• Frame

N.A.
• Function Key Panel

N.A.
• Google Chart

N.A.
• Group Box

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No Yes Yes No No No No No No No
• Hyperlink

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No No No No No No No No No No
• Image

N.A.
• Inputbox Style 1

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No No Yes No No No No No No No
• Label

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No No No No No No No No No No
• Message Handler

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes Yes No Yes Yes Yes Yes No No No No
• Mobile Camera

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No No No No Yes Yes No No No No
• Mobile Email

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes Yes No No Yes Yes Yes No No No No
• Mobile SMS

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes Yes No No Yes Yes Yes No No No No
• Multitype Input Box

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No No Yes No No No No No No No
• Push Button

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes Yes No No Yes Yes Yes No No No No
• Quick Pick Menu

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No No Yes No Yes No No No No No
• Radio Button

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes Yes No No Yes Yes Yes No No No No

eXtensions Tutorial 16 – JQuery Themes - Page 376 of 407

• Raw HTML
N.A.

• Screen Data Viewer
Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No No No No No No No No No No
• Simple Box

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes Yes No Yes No No No No No No No
• Simple Line

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No No Yes No No No No No No No
• Simple Stripe

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes Yes Yes No Yes Yes No No No No No
• Spin Edit

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes No No Yes No No No No No No No
• Subfile Scroller

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
No Yes No No Yes Yes Yes No No No No
• Theme (jQuery)

N.A.
• Timer

N.A.
• jQuery Keypad

Font Corner Header Content Default Hover Active Highlight Error Overlays Shadows
Yes Yes No No Yes No Yes No No No No

Refer to the table of each extensions if you intend on customizing using the ThemeRoller so you can know
which of the extensions will be affected by any changes you make on the style.

Downloading jQuery Themes
To download existing jQuery themes or customize existing themes to create your own theme, you can go the
jQuery ThemeRoller web site at http://jqueryui.com/themeroller/.
To download customized theme, click on the Download theme button located on the Roll Your Own tab.

To download existing jQuery themes, click on the Download button located at the bottom of the theme you
wish to download on the Gallery tab.

http://jqueryui.com/themeroller/

eXtensions Tutorial 16 – JQuery Themes - Page 377 of 407

Clicking any of the download buttons mentioned above will bring you to the Theme Roller download page.

Just leave most of the settings unchanged and go to the bottom of the page.
Input “.terminalTheme” (with the dot) in the CSS Scope input box.

Click on the download button and save the files in your local folder.
Then extract the file (jquery-ui-1.11.4.custom.zip).
Rename the extracted folder to “jQtheme_” + <theme name> where <theme name> is the name of theme
that you want to appear in the jqueryTheme dropdown list. The <theme name> is the name that will also be
used to passed as an argument to the SETAXESJQUERYTHEME() api. So choose your name wisely.
After renaming, copy the whole directory (jQtheme_<theme name>) into your project’s theme folder located
at \ts\screens\<project name>\projectThemes where <project name> is the name of your project where you
wish to use the downloaded theme.

Note: Make sure to set the authorities of all the file inside the jQtheme_<theme name> ti *PUBLIC *R
authorities. Use the WRKLNK command in your IBM i to ensure that the new files only have the
*PUBLIC *R authorities.

If you want the theme to be selectable on newly created projects, just copy the theme folder into the
\ts\ts2\css\projectThemes folder. Copying the theme into this folder will not make it selectable on existing
projects. You need to copy the theme into the existing projects that you want it to be used.

jQuery Theme Extensions’ Additional Features
The following are the behaviours and features that will be added into the extensions when usejQueryExtensions
is checked.

• Hover
Some clickable extensions will change display when the mouse is hovered over it. The hover
style can be customized using the Clickable: hover state styles in ThemeRoller. Some notable
components are Push Button, Checkbox and Radio Button.

• Labels
Labels can already be set as a property for the Dropdown and Checkbox extensions. For the
checkbox, the button of the checkbox will be proportional to the width of the label.

• Display
Besides being better looking and themeable compared to the basic extensions, using the
jQuery Theme Extensions will fix some of the display issues that cannot be fixed in the basic
extensions. An example is the problem with dropdown menu being displayed in the wrong
position when the screen is zoomed. This will be handled better using the jQuery extensions.
The detailed comparison between the basic extension and the jQuery extension will be
explained below.

eXtensions Tutorial 16 – JQuery Themes - Page 378 of 407

Difference between Basic and jQuery Extensions
Aside from being themeable, some of the noticeable difference between the basic and jQuery extensions are
described below.

• Checkbox
With the jQuery Checkbox extension, the label can be set using the label property of the
extension. Setting the value of the label will automatically resize the button width so that
the label will fit into the checkbox.
Label Property:

Basic Checkbox:

jQuery Checkbox:

Without label With Label

jQuery Checkbox in checked mode:

Without label With Label

Note: There is a possibility that the label set in the checkbox will be lost when you set the
usejQueryExtensions from checked to unchecked and then to checked again.

• Dropdown
With jQuery Dropdown extension, long text options are truncated with “…” to indicate that
the full text is not displayed. Also, the Dropdown menu’s width is the same as the
extension’s width unlike the basic extension. Long text that won’t fit the width are
automatically moved to the next line for the jQuery extension.

Basic extension with a long text as option: jQuery extension with a long text as option:

Basic Extension Dropdown menu jQuery Extension Dropdown menu

eXtensions Tutorial 16 – JQuery Themes - Page 379 of 407

• Group Box

The only difference with the Basic and jQuery Group Box is that the jQuery Group Box
extension will be displayed based on the jQuery theme set for the screen. When no theme is
set but the usejQueryExtensions property is checked, the default Redmond theme will be
used for the display.

Basic extension with Classic and Modern look:

jQuery Extension with Classic and Modern look (with default Redmond theme):

• Quick Pick Menu

There is no difference in the icon of the Quick Pick Menu but the display of the menu will be
themed according to the currently set jQuery theme.

Basic Extension jQuery Extension

• Radio Button

eXtensions Tutorial 16 – JQuery Themes - Page 380 of 407

The jQuery Radio Button extension’s appearance and behaviour will be like the jQuery
checkbox extension. The difference between the selected and unselected display can be
seen below.

Basic extension jQuery Extension

• Simple Stripe

The Simple Stripe jQuery extension will not have the gradient style that is being used by the
basic Simple Stripe extension. Instead of using gradients, the Simple Stripe jQuery extension
uses the jQuery theme’s background styles which uses image in the background. Also, the
Simple Stripe jQuery extension will not use the orientation property. The useOldStyle
property is added to allow the use of the basic Simple Stripe behaviour. Checking the
useOldStyle property will ignore the current jQuery theme and use the style settings in the
USERENV object instead. This will result in the extension being displayed the same as the
basic Simple Stripe extension.

Basic Extension jQuery Extension

orientation = horizontal

orientation = horizontal

orientation = vertical

orientation = vertical

• Spin Edit

Besides the difference in appearance, the jQuery Spin Edit extension’s behaviour changed to
properly support the visibleLines property. On the basic extension, setting this value to
greater than 1 will have no effect on the height of the extension. The basic extension’s
height will always be the same as the height of the field. For the jQuery extension, setting
the visibleLines to more than 1 will automatically resize the height of the extension to be
able to display the number of items indicated in the visibleLines property. To support the
basic extension’s behaviour of the height being always the same as the field, all you have to
do is to set the visibleLines property of the jQuery Spin Edit extension to zero.
When setting the visibleLines property to 4, the display will be as follows:

Basic Extension jQuery extension

The same as the field height

4 items will be viewable

eXtensions Tutorial 16 – JQuery Themes - Page 381 of 407

• Theme (jQuery)
On the Basic Theme (jQuery) extension, putting it in a screen not only changes the theme of
the screen but of the development environment as well. Also, when changing to a different
screen (without the Theme (jQuery) extension in it), the screen will also inherit the theme
that was set on the previous screen. This does not allow each screen to have its own jQuery
theme setting. For the new version of Theme (jQuery) extension, it will only be applied to
the screen where it was added. Moving to a different screen will not inherit the theme of
the previous screen but it will apply the theme setting of the application.

• jQuery Keypad and Date
Although jQuery Keypad and Date extension are already jQuery extensions, the basic
extensions cannot have its default theme to be changed unless a Theme (jQuery) extension
is added with it in a screen. But with the jQuery extension version, the jQuery Keypad and
Date extension will be displayed according to the set theme for the screen.

jQuery Keypad and Date with different themes:
Redmond Theme

ui-lightness Theme

• Push Button, Mobile Email, Mobile SMS, Subfile Scroller
All button extensions will have a new look along with the hover feature.

Basic extension jQuery extension

eXtensions Tutorial 16 – JQuery Themes - Page 382 of 407

• Default Visualization, Inputbox Style 1, Multitype Input Box
All input type extensions will have its border and background colour customizable.

• Label, Hyperlink, Mobile Camera, Screen Data Viewer, etc.
All other extensions just use the jQuery theme font setting when the usejQueryExtensions
property is checked.

Limitations
When converting existing projects to use jQuery extensions, layout problems may arise related to the font size
and other styles. In case such problem occurs, you can always customize the jQuery Theme to use the style
that are being used by the existing project.
Some extensions’ text alignment are highly dependent on the jQuery widget, such as the dropdown, buttons,
checkbox and radio buttons, that setting its height to a smaller value than the font size will cause alignment
problems.
An example of display issues that may occur is as follows:

The Edit Employee Information screen customized without using jQuery Extensions

The same screen using the jQuery Extension

eXtensions Tutorial 16 – JQuery Themes - Page 383 of 407

Since the base font for the two screens are different, the display issues indicated above will occur. Therefore
resizing and realigning the extensions on the screen will be needed.
jQuery Theme is based on the jQuery framework. The functionality and customization is limited to the
capability and limitations of the jQuery framework. Any jQuery framework related issues will need to be
handled once they are identified.

jQuery Themes aXes Menu
When the Appication’s Styling->usejQueryExtensions checkbox is checked and the jqueryTheme property is set
to “Default”, the jQuery Themes menu will be enabled. The menu is located in the aXes Display->Select
Theme->jQuery Themes menu. All jQuery themes shipped with aXes will be listed in this menu.

When jQuery theme is enabled, the login screen will also be displayed using the selected jQuery theme in the
Application’s jqueryTheme property.

Using the jQuery Themes menu, you can change the default theme of the application.
Ex. Setting the theme to “ui-darkness” using the jQuery Themes menu.

eXtensions Tutorial 16 – JQuery Themes - Page 384 of 407

After logging in, the default theme will be changed to this theme.

eXtensions Tutorial 16 – JQuery Themes - Page 385 of 407

Changing the theme is still possible using the menu which will result in the following screen when
the theme is set to “blitzer” using the jQuery Themes menu.

When a Theme(jQuery) extension exist in a screen, changing the jQuery theme using the jQuery Themes menu
will have no effect because the extension’s theme setting will have a higher priority. Therefore, the screen will
always be displayed using the extension’s theme even if different themes are selected using the jQuery
Themes menu.

See Also
Using jQuery UI ThemeRoller: http://learn.jquery.com/jquery-ui/themeroller/
CSS Framework: http://api.jqueryui.com/theming/css-framework/
A Massive Guide to Custom Theming jQuery UI Widdgets: http://code.tutsplus.com/tutorials/a-massive-
guide-to-custom-theming-jquery-ui-widgets--net-22714

http://learn.jquery.com/jquery-ui/themeroller/
http://api.jqueryui.com/theming/css-framework/
http://code.tutsplus.com/tutorials/a-massive-guide-to-custom-theming-jquery-ui-widgets--net-22714
http://code.tutsplus.com/tutorials/a-massive-guide-to-custom-theming-jquery-ui-widgets--net-22714

eXtensions Tutorial 17 – Google Chart Tutorial - Page 386 of 407

eXtensions Tutorial 17 – Google Chart Tutorial

1.1. Define two static tables, the Popularity Table (now) and Popularity
Table (previous):

--

1.2. Add a Google chart extension and set the following properties:

=========================
-- Popularity Table (now)
-- =========================

 DefineObjectInstance {
 className = "StaticTable",
 name = "Popularity2",
 source = "inline",
 rows = {
 { name = "Cesar", popularity = 250 },
 { name = "Rachel", popularity = 4200 },
 { name = "Patrick", popularity = 2900 },
 { name = "Eric", popularity = 8200 },
 },
 };

-- =========================
-- Popularity Table (previous)
-- =========================

 DefineObjectInstance {
 className = "StaticTable",
 name = "Popularity1",
 source = "inline",
 rows = {
 { name = "Cesar", popularity = 370 },
 { name = "Rachel", popularity = 600 },
 { name = "Patrick", popularity = 700 },
 { name = "Eric", popularity = 1500 },
 },

 }; `

Documentation Library

eXtensions Tutorial 17 – Google Chart Tutorial - Page 387 of 407

1.3. Add the following script to the options property:

1.4. After clicking the OK button in the edit script dialog, the chart
extension immediately will become:

(Static Table data which generated the Diff chart is courtesy of Google.)
The resulting chart is a rendering of a bar graph showing the current and the previous
popularity data of persons.

As for the usage of the XML file data source, just like in the dropdown extension, the
user of an Axes developer would depend on the XML filename and the directory where
the file resides.

Also, in the documentation of the dropdown extension, there is a data source type called
“Fixed Values”. In this extension, the same thing is called “Fixed Array (Google Array
Format)” and “Fixed Table (Google DataTable Script)”; these 2 new data source types
are of Google’s flavour because this extension is bound to follow Google’s rules.
According to the Google developer website
 https://developers.google.com/chart/interactive/docs/datatables_dataviews#arraytodatatable
an array in the format of
 [<row 1 data>, <row 2 data>, <row 3 data>… <row N data>]
where a row data represents a table row, will produce a graph if this array is passed as a
parameter to the
 google.visualization.arrayToDataTable()
API and the resulting value is passed as the data parameter to the chart() API of an
instantiated chart object.

https://developers.google.com/chart/interactive/docs/datatables_dataviews#arraytodatatable

eXtensions Tutorial 17 – Google Chart Tutorial - Page 388 of 407

An example illustrating the usage for the fixed array data source is given in the following
steps.

2.1. Add a Google chart extension and set the following properties:

2.2. Add the following script (or an equivalent) to the arrayData property:
 ENV.returnValue = [
 ["地名", "テキスト "],
 ["秦野駅", "地元！！！"],
 ["東武練馬駅", "自宅！！！"],
 ["浅草橋3-1-8", "職場！！！"]
];

 Note that the texts in the script follow the <place, comment> row format. Hence, to
create data for a more general audience, specific values can be made in the form of
 [[“name of place”, “comment”],
 [place #1, comment #1],
 [place #2, comment #2],
 [place #3, comment #3]]
replacing places and comments with actual place names and remark texts in quotes.

2.3. Add the following script to the options property:
 ENV.returnValue = {
 mapType: ‘normal’,
 showTip: true
 };

2.4. After clicking the OK button in the edit script dialog, the chart
extension immediately will become:

The chart shows a map in Japan with red markers to the 3 place names just defined in
the arrayData property.

eXtensions Tutorial 17 – Google Chart Tutorial - Page 389 of 407

Note: Set the zoom setting in the upper-right hand corner of the screen to 100% to be
able to display the tooltip when mouse is hover on the red marker.

As for the fixed table data source type, according to the Google website
 https://developers.google.com/chart/interactive/docs/datatables_dataviews#emptytable
a DataTable object can be instantiated, column names and types can be defined, and the
object data can be populated in a scripting manner. Thus, this DataTable object becomes
the data source for this type.

https://developers.google.com/chart/interactive/docs/datatables_dataviews#emptytable

eXtensions Tutorial 17 – Google Chart Tutorial - Page 390 of 407

An example illustrating the usage for the fixed table data source is given in the following
steps.

3.1. Add a Google chart extension and set the following properties:

3.2. Add the following script to the options property:
ENV.returnValue = {
 "sankey": {
 "node":
 {
 "colors": ["#a6cee3", "#b2df8a", "#fb9a99", "#fdbf6f", "#cab2d6", "#ffff99", "#1f78b4", "#33a02c"],
 "label" : { "bold": true, "color": "#871b47", "fontName": "Times-Roman", "fontSize": 14, "italic": true }
 },
 "link":
 {
 "colorMode": "gradient",
 "colors": ["#a6cee3", "#b2df8a", "#fb9a99", "#fdbf6f", "#cab2d6", "#ffff99", "#1f78b4", "#33a02c"]
 }
 }
};

3.3. Add the following script to the tableScript property:
var data = new google.visualization.DataTable();
data.addColumn('string', 'From');
data.addColumn('string', 'To');
data.addColumn('number', 'Weight');
data.addRows(
 [
['Brazil', 'Portugal', 5],
['Brazil', 'France', 1],
['Brazil', 'Spain', 1],
['Brazil', 'England', 1],
['Canada', 'Portugal', 1],
['Canada', 'France', 5],
['Canada', 'England', 1],
['Mexico', 'Portugal', 1],
['Mexico', 'France', 1],
['Mexico', 'Spain', 5],
['Mexico', 'England', 1],
['USA', 'Portugal', 1],
['USA', 'France', 1],
['USA', 'Spain', 1],
['USA', 'England', 5],
['Portugal', 'Angola', 2],
['Portugal', 'Senegal', 1],
['Portugal', 'Morocco', 1],
['Portugal', 'South Africa', 3],
['France', 'Angola', 1],
['France', 'Senegal', 3],
['France', 'Mali', 3],
['France', 'Morocco', 3],
['France', 'South Africa', 1],
['Spain', 'Senegal', 1],
['Spain', 'Morocco', 3],
['Spain', 'South Africa', 1],
['England', 'Angola', 1],
['England', 'Senegal', 1],
['England', 'Morocco', 2],
['England', 'South Africa', 7],
['South Africa', 'China', 5],
['South Africa', 'India', 1],
['South Africa', 'Japan', 3],
['Angola', 'China', 5],
['Angola', 'India', 1],
['Angola', 'Japan', 3],
['Senegal', 'China', 5],

eXtensions Tutorial 17 – Google Chart Tutorial - Page 391 of 407

['Senegal', 'India', 1],
['Senegal', 'Japan', 3],
['Mali', 'China', 5],
['Mali', 'India', 1],
['Mali', 'Japan', 3],
['Morocco', 'China', 5],
['Morocco', 'India', 1],
['Morocco', 'Japan', 3]
]
);
ENV.returnValue = data;

3.4. After clicking the OK button in the edit script dialog, the chart
extension immediately will become:

(Fixed Table script which generated the Sankey chart is courtesy of Google.)
A backgrounder from Google:
A sankey diagram is a visualization used to depict a flow from one set of values to another. The things being connected are called nodes and
the connections are called links. Sankeys are best used when you want to show a many-to-many mapping between two domains (e.g.,
universities and majors) or multiple paths through a set of stages (for instance, Google Analytics uses sankeys to show how traffic flows from
pages to other pages on your web site).
For the curious, they're named after Captain Sankey, who created a diagram of steam engine efficiency that used arrows having widths
proportional to heat loss.
Another new data source type that is introduced to Axes in this extension is the usage
for the Google Data Query. In this usage, a user of the Axes developer only needs to
define a URL and a query string for a known datasource web service.
An example illustrating this usage is given in the following steps.

4.1. Add a Google chart extension and set the following properties:

queryString: SELECT A,D WHERE D > 100 ORDER BY D

4.2. Add the following string to the url property:
 http://spreadsheets.google.com/tq?key=pCQbetd-CptGXxxQIG7VFIQ&pub=1

eXtensions Tutorial 17 – Google Chart Tutorial - Page 392 of 407

4.3. Add the following string to the options property:
ENV.returnValue = {
 legend: 'top',
 hAxis:
 {
 slantedText: true
 }
};

4.4. After clicking the OK button in the edit script dialog, the chart
extension immediately will become:

(Values for the url and the queryString properties which generated the Line chart is
courtesy of Google.)
 The chart above shows the population density. So, if the datasource web service in this
example updates their data instantaneously, that means that the extension is displaying
a graph with real-time data.
Note: Set the zoom setting in the upper-right hand corner of the screen to 100% to be
able to display the tooltip when mouse is hover on the point in the chart.
arrayData2, directory2, filename2, queryString2, sqlVariable2, tableFilename2,
tableName2, tableScript2, url2 properties
The illustration in example 1 which explains how to use the static table data source type
gives a hint on the usage of the tableName2 property. And in the example, the
chartType value is “Diff Chart”. Therefore, the usage for the other properties which are
arrayData2, directory2, filename2, queryString2, sqlVariable2, tableFilename2,
tableScript2, and url2 will have meaning only when the chartType value is also “Diff
Chart”. The arrayData2 property is the counterpart of the arrayData property when the
data source type is “Fixed Array (Google Array Format)”, and so on and so forth…

columnOrder property
The columnOrder property is applicable when the data source type is “Dynamic Table”,
“Static Table”, or “XML File”. The purpose of this property is to allow the user to identify
which column data is first, which is next to it, etc., because the extension has no way to

eXtensions Tutorial 17 – Google Chart Tutorial - Page 393 of 407

know which is which. If this is not specified, the extension will default to the alphabetical
order of column names.
Revisiting the example 1 about the usage for the static table data source type, note that
the “name” and the “popularity” labels defined in the static tables from step 1.1 can be
assigned arbitrarily by the user. With a wrong column name ordering, this may lead to
error in chart rendering which cannot be debugged at the extension level.
To illustrate this scenario, change all the “popularity” string to “fame” in the 2 tables.
The new table definitions will become:

Save and close the file; reload the project. The new rendering of the chart extension will
become:

To rectify this situation, there is a need to adjust the label ordering by setting the
columnOrder property to:

eXtensions Tutorial 17 – Google Chart Tutorial - Page 394 of 407

This means that the “name” string is set as the first column label, and the “fame” as the
next column label. If the “fame” label is set as the first column label, for example,
 [“fame”, “name”],
it will lead to the same rendering error shown previously, popping the “First column must
be a domain column” message, since the columnOrder property is not specified and the
default behaviour is to sort out the columns names resulting to an array with “fame” as
the first element.
After clicking the OK button in the edit script dialog, the chart extension immediately will
result to the expected output:

Notice that the legend name representing the blue bar is changed from “popularity” to
“fame”.
noColumnLabel property
The noColumnLabel property is applicable when the data source type is “Fixed Array
(Google Array Format)”, or “Static Table”. With these data sources, a user can define an
array data where the first row is actually a row data which do not represent column
labels. Checking this property lets the extension know that this is the case.
An example illustrating the noColumnLabel property is given in the following steps.

5.1. Add a Google chart extension and set the following properties:

eXtensions Tutorial 17 – Google Chart Tutorial - Page 395 of 407

5.2. Add the following script to the options property:

5.3. Add the following script to the arrayData property:
 ENV.returnValue = [
 ["Mon", 20, 28, 38, 45],
 ["Tue", 31, 38, 55, 66],
 ["Wed", 50, 55, 77, 80],
 ["Thu", 77, 77, 66, 50],
 ["Fri", 68, 66, 22, 15]
];

Click the OK button in the edit script dialog above, and unlock the screen to show the
output, the chart extension will display:

The reason for this error is that, in the array values just set to arrayData property, the
first row data is of the same kind with the rest of the data. In other words, it does not
represent the column labels. To correct the situation, simply

5.4 Check the noColumnLabel property:

and immediately, the chart extension will become:

eXtensions Tutorial 17 – Google Chart Tutorial - Page 396 of 407

(Fixed array values which generated the Candlestick chart is courtesy of Google.)
A backgrounder from Google:
A candlestick chart is used to show an opening and closing value overlaid on top of a total variance. Candlestick charts are often used to show stock value behavior. In this chart,
items where the opening value is less than the closing value (a gain) are drawn as filled boxes, and items where the opening value is more than the closing value (a loss) are
drawn as hollow boxes.

options property
The options property is the key to the styling of a Google Visualization chart. Familiarize
each of the charts to learn what properties and behaviour that are applicable to each
one.

draggable, dragHandle, dragHandleOrientation, dragHandleVariable properties
The draggable property enables the placement of the extension be changed by mouse
movement.
If a user wants the extension to be moved only by dragging in a specific portion of it,
then the dragHandle property should be set. With a checked dragHandle property, the
user is given a default drag handle with a given characteristics:
 - light-blue color
 - size of 20px by 50px (height x width)
 - offset margin of 10px both from the top side and from the right side
These characteristics is modifiable by changing the values of the dragHandleVariable
property.
The dragHandleOrientation property which has a default value of “Top-Right” can also be
set to other values which are:
 “Top”, “Top-Left”, “Right”, “Bottom-Right”, “Bottom”, “Bottom-Left”, “Left”, “Center”,
 “User-Defined”
The reason for the drag handle is because there are some charts which allow browsing to
its content portions. A good example is the map. By dragging a portion of the map,
browsing to the other map coordinates not shown previously is possible without moving
the chart position. Without this drag handle, map browsing cannot be done when the
draggable property is checked or enabled.
As an illustration for the dragHandle property, revisit the map project in example 2.
Dragging a map portion will change the view to other coordinates depending on the
direction of the dragging action.

eXtensions Tutorial 17 – Google Chart Tutorial - Page 397 of 407

6.1 Check or enable the draggable property:

Immediately, the dragHandle property will be added to the extension property pane.
Dragging a map portion gives a different result at this time because the whole chart area
will be moved. Since this new behaviour is not the desired output,

6.2 Check or enable the dragHandle property:

Immediately, 2 complimentary properties, namely, dragHandleOrientation and
dragHandleVariable, will be added to the extension property pane.

Simultaneously, the chart extension will become:

The added portion in light-blue color inside the chart extension is how the default drag
handle looks like. Moving the mouse icon to the light-blue area will turn it from the grab
icon to the move icon . Dragging from the drag handle area will move the whole
chart extension. Dragging from other portions of the map will allow browsing to the rest
of map coordinates.

6.3 Set the dragHandleOrientation property to:

eXtensions Tutorial 17 – Google Chart Tutorial - Page 398 of 407

6.4 Set the script of the dragHandleVariable property to:

Clicking the OK button of the edit script dialog, the chart extension immediately will
become:

The characteristics of the drag handle becomes yellow in color, 50px by 30px in size, and
(190px, 140px) in (left, top) location. Hovering the mouse to the drag handle area will
turn the grab icon to the cell icon .
In the dragHandleVariable property variable there are 4 offset margin parameters,
namely, bottomOffset, leftOffset, rightOffset and topOffset. Listed below are the
dependencies of these parameters to the values of the dragHandleOrientation property.
 Top : topOffset
 Top-Left : leftOffset, topOffset
 Right : rightOffset
 Bottom-Right: bottomOffset, rightOffset
 Bottom : bottomOffset
 Bottom-Left : bottomOffset, leftOffset
 Left : leftOffset
 Center : none
 User-Defined : leftOffset, topOffset
This means that only parameters with dependencies will have effect on the setting of the
dragHandleOrientation property. Notice that there is no dependency with the “Center” as

eXtensions Tutorial 17 – Google Chart Tutorial - Page 399 of 407

value for the dragHandleOrientation property simply because there is only one center
location. Note that setting the value of the dragHandleOrientation property from Top-Left
to User-Defined (or vise versa) have no significant effect because both have the same
dependency parameters which are leftOffset and topOffset.

URLs

Google Visualization Charts
 https://developers.google.com/chart/interactive/docs/
Terms of Service:
 https://developers.google.com/chart/terms
Google Array Format
 https://developers.google.com/chart/interactive/docs/datatables_dataviews#arraytodatatable
DataTable Scripting
 https://developers.google.com/chart/interactive/docs/datatables_dataviews#emptytable
draw() API
 https://developers.google.com/chart/interactive/docs/drawing_charts#chart.draw
computeDiff() API
 https://developers.google.com/chart/interactive/docs/gallery/diffchart

eXtensions Tutorial 18 – TS2 Login Screen Customisation

Copy the Shipped Logon Screen to Make your own Version
On your IBMI make copies of /ts/ts2/login.html and /ts/ts2/login.css and name them respectively
MyTest_Login.html and MyTest_Login.css
Using the IBM i WRKLNK command check that user *PUBLIC has *R rights only to the new files
MyTest_login.html and MyTest_Login.css.

Set Up a Desktop Short Cut to Test Your Custom Sign On Screen
Set up a desktop short cut to test your custom logon. The URL it uses should be like this:
http://<axeshost>:<axesport>/ts/ts2/index.html?login=MyTest_Login

This will start an aXes terminal session using your custom log in screen instead of the standard shipped one.
Test your desktop shortcut. The result should look like this (ie: exactly like this shipped log on):

When the height of the window is resized to less than 350px, the logo will not be displayed.

Customizing the aXes Logon Screen in aXes-TS2
Note that the following section applies to aXes-TS2 version 4.10.

Documentation Library

eXtensions Tutorial 18 – TS2 Login Screen Customization - Page 401 of 407

Starting Point – The Shipped Logon Screen

Result – Your Customized Logon Screen

The first steps are the same as customising logon screen in TS-2. The only difference is the css classes used.

Have a quick look at the structure of MyTest_Login.html
Open your MyTest_Login.html document with a source editor, for example NOTEPAD.
This logon screen does not use the jQueryTheme.
Below is the HTML required to build the logon page. The part that is of interest to us are the first few lines and
the footer div:
<div id="loginPage">
<div id="loginLogo">
 <div id="centerLogo"></div>
</div>
…
<div class="lansaGroupCopyright">

eXtensions Tutorial 18 – TS2 Login Screen Customization - Page 402 of 407

 ©
</div>
Now have a look at MyTest_Login.css to see how these elements have been styled:
#loginPage {
 width:100%;
 height: 100%;
 position: relative;
 top: 0px;
 left: 0px;
 background-color: #415064;
 font-family: "Trebuchet MS",Tahoma,Verdana,Arial,sans-serif;
 font-size: 10pt;
 overflow: auto;
 display: table;
}
#centerLogo {
 background: transparent no-repeat center center;
 width: 300px;
 height: 90px;
 margin-left: auto;
 margin-right: auto;
}
#loginPage .lansaGroupCopyright {
 color: white;
 font-size: 11px;
 font-weight: bold;
 font-family: arial, san-serif;
 text-align: center;
 display: table-row;
 height: 20px;
}
The first <div> (id="loginPage") wraps all the content of the login page. It has been sized and positioned to fill
the entire terminal area. It has been given a background color and sets the font settings for the whole div.
The logo<div>(id=”centerLogo”) has been given a transparent background color, does not repeat the
background image and has margins set to auto to position it to the center of this <div>.
Since the first div’s display is set to table, the footer<class=”lansaGroupCopyright”> display is set to table-
row. This allows the footer to not overlap the login box and stays at the bottom when the window is resized
smaller.

Change The Background Images
In this tutorial, we will use a background image for the whole login page, replace the logo with text and create
a new div for the logo with some text, then change the login box’s elements color and opacity to adapt to the
background-image.
When the height of the window is resized to less than 350px, all the images will not be displayed including the
“Welcome to LANSA” text and the text under the LANSA logo.
The background image used is downloaded from https://kbdevstorage1.blob.core.windows.net/asset-
blobs/19050_en_1.
Name this image as “loginBg.jpg” and put it in ts2\css\images folder.
Change the html as follows:
<div id="loginPage">
<div id="logoArea">
 <div id="newLogo"></div>
</div>
<div id="loginFieldsWrapper">
 <div id="loginLogo">
 <div id="centerLogo">Welcome to LANSA</div>
 </div>
...
Edit the style entry as follows:
@media screen and (min-device-width: 601px) {
 #centerLogo {
 /*background-image: url(css/images/centerlogo.png);*/
 display: block;
 }
 …
}
#loginPage.shortScreen #centerLogo {
 /*background-image: none;*/
 display: none;
}

Add the style entries as follows:
#loginPage {

https://kbdevstorage1.blob.core.windows.net/asset-blobs/19050_en_1
https://kbdevstorage1.blob.core.windows.net/asset-blobs/19050_en_1

eXtensions Tutorial 18 – TS2 Login Screen Customization - Page 403 of 407

 width:100%;
 height: 100%;
 position: relative;
 top: 0px;
 left: 0px;
 /*background-color: #415064;*/
 font-family: "Trebuchet MS",Tahoma,Verdana,Arial,sans-serif;
 font-size: 10pt;
 overflow: auto;
 display: table;
 background: url(css/images/loginBg.jpg) no-repeat center center;
}
#newLogo {
 background: url('http://www.lansa.com/img/lansa-logo.png') no-repeat center center;
 width: 200px;
 height: 100px;
 float: left;
}
#loginLogo {
 display: block;
 /*height: 95px;*/
}
#centerLogo {
 /*background: transparent no-repeat center center;*/
 width: 300px;
 height: 50px;
 margin-left: auto;
 margin-right: auto;
 color: white;
 text-align: center;
 font-size: 30px;
}
Save your changes, clear your browser cache and reload the page. The result should be like this:

Changing the Login Detail Box
We will change the login box background color so that the background image can still be seen underneath it.
Add the style entries as follows:
To position the login box to the right and change the opacity of the background color:
#loginFieldsWrapper {
 padding: 10px;
 width: 340px;
 /*margin-left: auto;
 margin-right: auto;
 display: block;
 overflow: hidden;*/

eXtensions Tutorial 18 – TS2 Login Screen Customization - Page 404 of 407

 margin-top: 40px;
 /*background-color: #798593;*/
 background-color: rgba(121, 133, 147, 0.7);
 float: right;
 margin-right: 40px;
}
#loginLogo {
 /*display: block;
 height: 95px;*/
}
To change the background and text color of Reconnect checkbox:
#loginPage input[type='checkbox'] + label:before {
 content: "\00a0";
 background: rgba(0,0,0,0.6);
 color: white;
 height: 16px;
 width: 16px;
 display: inline-block;
 margin-right: 5px;
 padding: 0;
 vertical-align: top;
 margin-left: 2px;
}
#loginPage input[type="checkbox"]:checked + label:before {
 content: "\2713";
 text-align: center;
 color: white;
}
To change the background and its opacity and text color of input and select boxes:
#loginPage input, #loginPage select {
 margin: 2px;
 background-color: rgba(0,0,0,0.6);
 color: white;
}
To change the color of the button when hovered:
#loginPage .btnFields:hover,
#loginPage .btnFields:active {
 background-color: #f9cb69;
 border-color: #f9cb69;
 -webkit-appearance: none;
 -moz-appearance: none;
}
To change the background color of the select box on different media:
@media screen and (max-device-width: 600px) {
…
 #loginPage #advancedLoginFields select {
 background-color: rgba(0,0,0,0.6);
 height: 36px;
 }
…
}
@media screen and (min-device-width: 601px) {
 #loginPage #advancedLoginFields select {
 background-color: rgba(0,0,0,0.6);
 height: 36px;
 }
}
To not display the background image in mobile and other short screen, add the following:
@media screen and (max-device-width: 600px) {
…
 body.mobile #logoArea {
 display: none;
 }
 body.mobile #loginLogo {
 /* height: 10px;*/
 }
…
}
#loginPage.shortScreen #logoArea {
 display: none;
}

Save your changes, clear your browser cache and reload the page. The result should be like this:

eXtensions Tutorial 18 – TS2 Login Screen Customization - Page 405 of 407

Add a custom text under the logo
Insert these new lines to add a custom text in the logo area:
…
<div id="logoArea">
 <div id="newLogo"></div>

 <div id="customText">At LANSA we attempt to achieve the best for our customers.

 We do this by diligence, hard work and attention to detail.

 Just ask our customers!
 </div>
...
Add the following declaration to MyTest_Login.css:
#customText {
 margin-top: 70px;
 margin-left: 20px;
 color: white;
 font-style: italic;
}
Save your changes, clear your browser cache and reload the page. The result should be like this:

eXtensions Tutorial 18 – TS2 Login Screen Customization - Page 406 of 407

Click the arrow button to expand the login details and hover the mouse on the button:

Now do whatever you like
This example should give you enough basic information to create the look you want in your own custom logon
screen. All you have to do is make sure to test your changes. For the best visual results we strongly
recommend that you consult with a professional graphic designer.

eXtensions Tutorial 18 – TS2 Login Screen Customization - Page 407 of 407

Advanced Tutorials

Advanced aXes tutorials are not shipped with the product. To get a copy of an advanced tutorial, please
contact your aXes vendor.

These advanced tutorials are available:

Topic Content
External Hosting Shows you how to imbed aXes-TS applications inside other web pages, portals or

.NET applications.
Extended AutoGUI
Techniques

Shows you how to use scripting to logically extend the aXes AutoGUI capabilities
of aXes-TS.

Virtual Screens Shows you how to use "virtual" 5250 screens to logically extend and enhance an
existing 5250 application by introducing brand new screens that do not exist in
the real 5250 application.

Directing 5250 screen
access

Shows you how to initiate and automatically navigate aXes 5250 sessions from
URLs sent to users in e-mails, SMS messages, etc. In effect how to use
hyperlinks to support event- or action-based applications.

The Robot API Show you how the aXes-Robot API may be used to programmatically extract or
input data to/from 5250 screens.

Documentation Library

	eXtensions Tutorial 0 - Getting Started
	Check your Development PC is ready
	Check your Internet Explorer Settings
	Check that library AXESDEMO is installed and useable
	Check your aXes Server Settings (aXes upgrades only)
	Set up an eXtensions Project

	eXtensions Tutorial 1 - Screen and Field Identification
	Screen identification - Screens created without DDS
	The Output Field Dilemma
	When a field is not really a field - it's just a bit of output text

	Screen identification - Screens created using DDS
	Screen Signatures and the Concept of a "5250 Screen"
	The key question: What is a "5250 screen" exactly?
	So what exactly is a "5250 screen"?
	It's whatever you want it to be.

	eXtensions Tutorial 2 - Basic Screen Enhancement
	Using aXes Developer
	Selecting objects to customize
	What is the thin red line?
	aXes Developer window

	Simple customization
	Hide screen elements
	Screen enhancement techniques
	Add a group box

	Using screen customization to add value
	Add a button

	Using scripting to add value
	Add buttons and scripts

	Testing customizations
	Screen identifier/design concepts

	eXtensions Tutorial 3 - Advanced Screen Enhancement
	What this tutorial covers
	Screen and field names
	XHRRPGTRN_Select and its field names
	XHRRPGTRN_Maint and its field names

	What’s the plan?
	Getting assistance

	Setting up your styles
	Defining styles
	Why are styles important?

	Adding a stripe
	Moving elements, changing labels and captions
	Move and resize screen elements
	How to move screen elements
	How to resize screen elements

	Hiding screen elements

	Applying Styles
	Tooltips
	Managing long text in tooltips

	Dates
	Radio Buttons
	Drop down lists
	State field drop down
	Country field drop down
	Using ROW and other scripting objects

	Push Buttons
	Multi-lingual text
	Group boxes
	Images
	Hyperlinks
	Finish the screen customization
	Testing customizations

	eXtensions Tutorial 4 - Autogui+
	Introduction
	The Pre-defined Autogui+ Rules
	Menu Items
	Function Keys
	Hyperlinks
	Page Keys
	Prompt Buttons
	Date
	Radio Button
	Dropdown – Using Static Table
	Dropdown – Using Dynamic Table
	Label
	Multitype Input Box
	Checkbox
	Raw HTML
	Other Example: Hiding the screen name
	Other Example: Hiding the date/time information on the screen

	eXtensions Tutorial 5 - Tracing and Debugging Techniques
	You must complete Tutorial 3 first
	Note
	Using alert()
	Debug Basics
	Tracing Basics
	Debugging Tools and Options
	Using Fiddler

	eXtensions Tutorial 6 - The USERENV object
	What is the USRENV object?
	What is USRENV used for?
	How and where is it defined?
	Adding a property to the USERENV object
	Adding a function to the USERENV object
	Extending and Organizing the USERENV namespace
	Using a common USERENV and SHARED object (RAMP-TS)

	eXtensions Tutorial 7 - Tables and XML Documents
	Static Tables that load from static data
	Static Tables that load from a database file
	Static Tables and SQL Variables
	Using Several Static Table Files
	Dynamic Tables
	Frequently Asked Questions about this Example

	XML Documents
	Performance Considerations
	Some Usage Ideas
	Controlling Axes Using a System Definition Table
	Step 1 – Set up your system definition data base table
	Step 2 – Define a dynamic query to read data base table MYSYSDEF
	Step 3 – Read data base table MYSYSDEF when the user logs on
	Step 4 – Define your system values in the MYSYSDEF table
	Step 5 – Check that it all works okay
	Step 6 – Basic Concepts
	Step 7 – Infinite Extensibility , JSON Formatting and Default Values
	Step 8 – Advanced Capabilities – Arrays of System Properties
	Step 9 – Very Advanced Capabilities - Functions and "Soft" Logic

	SQL and CCSIDs
	Tip for handling SQL variables and differing CCSIDs

	Using Dynamic Tables to Produce Spreadsheets and Reports
	More about using Dynamic Tables with SQL

	eXtensions Tutorial 8 - Best Practices
	Develop Standards Early
	Avoid specifying fonts and colors for individual elements
	Treat screen Modernization as a Project
	Define your modernization "Value Proposition"
	Follow the 80/20 rule
	Use an Incremental Delivery Plan
	Use static DBMS code tables in XML documents
	Always assess screen customizations as a user
	Use Two Discrete Cycles: Identify and Customize
	Document/Communicate USERENV content
	Versioning aXes projects
	A simple way and low cost way to version aXes projects
	Development -> Test -> Production flow
	Starting to work on a New Version
	Back version Maintenance
	Hotfixing
	Branching
	Going live with a new version
	Tip
	Supporting Multiple Customer Bespoke Versions
	Folder Storage

	Establish the Deployment Model
	If You Use aXes-eXtensions with aXes-Cloud

	eXtensions Tutorial 9 - Creating your own eXtensions
	Getting Started
	A basic eXtension skeleton
	The aXes defined properties section
	The User-defined properties section
	The program section
	Solution
	Testing the Extension
	The program development lifecycle
	The extension checklist
	Questions?

	eXtensions Tutorial 10 - Deployment
	Assumptions
	Deployment of Files to the Target Application Folder
	Files That Need to be Deployed
	aXes eXtension Files
	Starting aXes on the Target System
	Put a Start Icon on End User Desktops
	URL Parameters
	Tracing Your Application
	Application Internationalization
	Language Codes

	eXtensions Tutorial 11 - 5250 Screen Styling
	The Shipped 5250 Basic Themes and Customized Styles
	Using Role Based Styles
	Do not have too many styles
	Using Themes
	Dynamically Changing Themes
	Applying Themes to Screen Elements
	Setting Styles Dynamically – Basic Concepts
	Setting Styles Dynamically – Self Styling
	Setting Styles Dynamically – Using the USERENV object
	Setting Styles Dynamically – Using Application Styles/Themes
	Understanding Screen Sizing and the Thin Red Line
	Using wide screens (132 x 27)
	Using Extended/Enhanced 5250 DDS attributes
	Changing 5250 Row / Column Size
	About Fonts and Font Sizes
	5250 Attributes Bytes
	5250 Attributes Bytes on Un-Customized 5250 screens
	5250 Attributes Bytes on Customized 5250 screens
	Copy the Shipped Logon On Screen to Make your own Version
	Set Up a Desktop Short Cut to Test Your Custom Sign On Screen
	Have a quick look at the structure of MyTest_Login.html
	Change The Background Images
	Changing the Header Text
	Add in your own Footer Area
	Now do whatever you like
	Don’t Forget to Back Up your Work

	eXtensions Tutorial 12 - FAQ and Examples
	Assumed Knowledge Level
	FAQ – Configuration and Standards
	Should I give each developer their own Definition Set / Project Folder?
	Can a screen's customization be completely removed?
	Can a screen's customization be reverted to an earlier version?
	If I rename a screen, does AXES automatically remove the old screen file?

	FAQ – Scripting
	Can I create a script that runs when my application starts up and when the user has signed on?
	Can I create a script that runs when a particular screen arrives?
	How can I hide AXES menu bar and status bar?
	My script needs to change a property of an element’s eXtension at runtime. Can it do that?
	Can I stop the user pressing a function key?
	When I reference the TABLEMANAGER in a USERENV.js function I get a runtime error, why?

	FAQ – Customizing eXtensions
	I want to always use the “Modern” look for all my group box eXtensions, can I do this without having to change the “look” property of each group box?
	When I have modified a property in an eXtension template, can I override the property value in certain eXtension instances?
	What else do I need to know about customizing eXtension templates?
	When I change the default “style” property of button eXtension, would this affect those buttons I created prior to this point?

	FAQ – 5250 Popups
	PopUp Windows and Screen Rendering in aXes-TS2
	URL Popups Parameter
	Recognising Degraded DDS Windows
	Keeping the Background Customizations
	When I start customizing a popup screen, it completely covers the whole screen, is this normal?
	I have customized a screen (screen A) that can invoke a popup (screen B). When the popup appears, what was shown in the background is the original uncustomized screen A instead of the customized one. What should I do?
	My popup is making use of the cursor to allow the user to select an item from a list, how will this work after the screen has been customized as the cursor does not show anymore?

	PopupWindow Extension

	FAQ – Calling IBM i Server programs from eXtension scripts
	Example 1 – Call with no parameters
	Example 2 – Call with one parameter
	Example 3 – Call with a returned value
	Example 4 – Numeric Parameters passed and returned
	Example 5 – Value Passed and Returned in same Parm
	Example 6 – Multiple Values Passed and Returned
	Example 7 – Multiple Values Returned in One Parameter
	Usage Rules, Guidelines and Tips

	FAQ – Developer Mode Issues
	aXes Designer has become very sluggish, is there anything I can do?
	I’m getting an error message “System call failed” while attempting to perform an operation in the designer. What should I do?

	Example – Using a Hyperlink to select a subfile entry
	Example – Iterating through subfiles entries
	Example – USERENV and Generic Coding
	Example – Selectively Iterating through subfiles entries
	Example - Hiding and Showing Fields on a Customized Screens
	Example – Dynamic Styling
	Example – Dynamically refreshing a drop down without server interaction
	Example – Two level drop down
	Example – Using a drop down as subfile option field
	Example – Dynamic Google Chart 1
	Example – Dynamic Google Chart 2
	Example – Creating Static Tables by Scripting
	Example – Working with 5250 Cursor
	Example – Multi-lingual Text
	Example – Visibility control (over a screen element - dynamic)
	Example – Using a date format not available in the Date eXtension
	Example – Visibility control over a new element - dynamic
	Example – Dynamic Tables using a condition that evaluates a numeric value

	eXtensions Tutorial 13 - Smart Phone Applications
	Prerequisites for Completing this Tutorial
	Overview and Objectives
	Getting Started - Check List of Objects You Need
	Implementing a Smart Phone Application
	About This Tutorial
	Create a new aXes project
	Setting up shared code in the USERENV.JS file (USERENV object)
	Using centralized signOn() and signOff() logic
	Set up Some Styles
	Setting up a HOME Screen
	New Screen Checklist
	Setting Up a Messages Screen

	Presenting Information on a Smart Phone
	Customer Inquiry
	Method 1 - Using Client Logic Only
	Time to try out the Real Thing via Desktop, Phone or Emulator
	Method 2 - Using a Service or Subroutine Program Approach
	Method 3 - Using a classic 5250 RPG Program
	Review of the 3 Interface and Access Methods

	Optional Steps
	Client Side Validation
	Remembering Values and Initial Values
	Ease of Use – Current and Dense Information Presentation
	Phone, Mail, SMS and Maps Integration
	Forget about using ……..
	Mostly Forget about using ……..
	Using a "Flat" Screen Navigation Model
	Using a Home Screen
	Log off from every screen
	Using a Messages Screen
	Portrait or Landscape – Choose One
	Prototyping Your Application
	Making a Real Application

	Using the Supplied MS-PowerPoint Set to Draft an Initial Design

	eXtensions Tutorial 14 - Utilities
	Prerequisites for Completing this Tutorial
	Overview and Objectives
	Backup and Restore
	Getting Started
	Backup
	Create a backup
	Downloading backup file

	Restore
	To restore a backup

	Delete
	To delete a backup

	List Project files
	Getting Started

	eXtensions Tutorial 15 - TS2 Developer Tools
	Basic Screen Enhancement
	You must complete Tutorial 1 and 2 first
	Using the aXes Designer Window
	Screen Mode
	Screen Customization
	Customize a User field.
	Deleting User Field
	Field Customization
	Alignment Tools

	eXtensions Tutorial 16 - jQuery Themes
	The Shipped Basic jQuery Themes
	aXes Styles Hierarchy
	Turning jQuery Theme On
	Changing jQuery Theme
	Dynamically Changing jQuery Theme
	Creating and Customizing jQuery Themes
	Downloading jQuery Themes
	jQuery Theme Extensions’ Additional Features
	Limitations
	jQuery Themes aXes Menu
	Using the jQuery Themes menu, you can change the default theme of the application.
	Changing the theme is still possible using the menu which will result in the following screen when the theme is set to “blitzer” using the jQuery Themes menu.
	See Also

	eXtensions Tutorial 17 – Google Chart Tutorial
	1.1. Define two static tables, the Popularity Table (now) and Popularity Table (previous):
	1.2. Add a Google chart extension and set the following properties:
	1.3. Add the following script to the options property:
	1.4. After clicking the OK button in the edit script dialog, the chart extension immediately will become:
	2.1. Add a Google chart extension and set the following properties:
	2.2. Add the following script (or an equivalent) to the arrayData property:
	2.3. Add the following script to the options property:
	2.4. After clicking the OK button in the edit script dialog, the chart extension immediately will become:
	3.1. Add a Google chart extension and set the following properties:
	3.2. Add the following script to the options property:
	3.3. Add the following script to the tableScript property:
	3.4. After clicking the OK button in the edit script dialog, the chart extension immediately will become:
	4.1. Add a Google chart extension and set the following properties:
	4.2. Add the following string to the url property:
	4.3. Add the following string to the options property:
	4.4. After clicking the OK button in the edit script dialog, the chart extension immediately will become:
	5.1. Add a Google chart extension and set the following properties:
	5.2. Add the following script to the options property:
	5.3. Add the following script to the arrayData property:
	5.4 Check the noColumnLabel property:
	6.1 Check or enable the draggable property:
	6.2 Check or enable the dragHandle property:
	6.3 Set the dragHandleOrientation property to:
	6.4 Set the script of the dragHandleVariable property to:
	URLs

	eXtensions Tutorial 18 – TS2 Login Screen Customisation
	Copy the Shipped Logon Screen to Make your own Version
	Set Up a Desktop Short Cut to Test Your Custom Sign On Screen
	Customizing the aXes Logon Screen in aXes-TS2
	Starting Point – The Shipped Logon Screen
	Result – Your Customized Logon Screen
	Have a quick look at the structure of MyTest_Login.html
	Change The Background Images
	Changing the Login Detail Box
	Add a custom text under the logo
	Now do whatever you like

	Advanced Tutorials

